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Chapter 1

Introduction

Research on structural characterizations of graphs is a very popular topic

in graph theory. The concepts of contractible edges and removable edges of

graphs are powerful tools to study the structure of graphs and to prove prop-

erties of graphs by induction.

In 1961, Tutte [40] gave a structural characterization of 3-connected graphs

by using the existence of contractible edges and removable edges. He proved

that every 3-connected graph with order at least 5 contains contractible edges,

and any a simple 3-connected graph nonisomorphic to K4 can be obtained

from the wheels by sequentially adding edges and by what Tutte called split-

ting vertices, which is Tutte’s famous Wheel Theorem. This is the earliest

result concerning the concept of contractible edges and removable edges. In

addition to Tutte’s results on the construction of 3-connected graphs, Bar-

nette [4, 5, 6] gave three different methods to construct 3-connected graphs by

using removable edges, 3-cycle contraction and cycle-contraction. As a sup-

plement of Tutte’s result, in 1982, Negami [28] obtained the following results:

Let K be a 3-connected graph which is not a wheel. Then G is a 3-connected

graph which can be contracted to K if and only if G can be obtained from

K by repeatedly adding and splitting edges . In 1978, Mader [22] gave a re-

duction method to construct k-edge-connected graphs. In 1979, Chaty and

Chein [8] gave a method to constructe minimally 2-edge-connected graphs.

In 1989, Zhu [46] gave a method on how to construct a minimally k-edge-
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2 CHAPTER 1. INTRODUCTION

connected graph. Zhang, Guo and Chen [47] described the construction of

critically k-edge-connected graphs. In 1994, based on the work of Habib and

Peroche [14], Peroche etc. [31] succeeded to construct the minimally 4-edge-

connected graphs. In 2003, Hennayake etc. [15] gave a method to construct a

minimally (k, k)-edge-connected graphs, where a connected graph G is (k; k)-

edge-connected if the k-edge-connectivity of G is at least k. Recently, Kriesell

[18] presented a method to construct the class C of finite simple 3-connected

triangle-free graphs from the 3-regular complete bipartite graph K3,3 and the

skeleton of a 3-dimensional cube.

A well-known application of the existence of contractible edges in 3-connected

graphs was given by Thomassen [39]. By induction he gave a very simple

proof for the three well-known theorems on planar graphs, i.e., Kuratowski’s

Theorem: a graph is planar if and only if it does not contain any subgraph

homeomorphic to K5 or K3,3; Fary’s Theorem: every planar graph has a plane

linear representation; and Tutte’s Theorem: every 3-connected graph has a

plane convex representation. The earlier proofs of the three theorems were

very complicated and tedious.

Another successful application of contractible edges is as follows. In 1974,

Lovász [21] posed the conjecture: let G be an n-connected graph and F be

a set of independent edges of G such that |F | = n. If n is even or G − F is

connected, then G has a cycle containing all the edges of F . Ando, Enomoto

and Saito [2] showed that the conjecture is true for n = 3 by using contractible

edges in 3-connected graphs.

From the above examples we can see the importance of studying the ex-

istence and distribution of contractible edges and removable edges of graphs.

Holton, Jackson, Saito and Wormald [16] studied the number of removable

edges in a 3-connected graph and their distribution. Su [32] obtained a sharp

lower bound on the number of removable edges in 3-connected graphs and also

gave a structural characterization of 3-connected graphs for which the lower

bound is sharp. Fouquet, Thuiller [12] studied removable edges in 3-regular
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graph. Contractible edges and removable edges graphs have been studied ex-

tensively in the literatures, see also [23-30, 32, 33], especially [19] for a survey

on contractible edges.

In 1974, Slater [36] presented a method for constructing 4-connected graphs.

He proved that a 4-connected graph can be obtained from K5 by using the

following operations repeatedly: (1) adding edges; (2) 4-soldering; (3) 4-point-

splitting; (4) 4-line-splitting; (5) 3-fold-4-point-splitting. Later, Yin [43] gave

a more convenient method to construct 4-connected graphs by using removable

edges and contractible edges. Yin proved that there always exist removable

edges in a 4-connected graph G, unless G is a 2-cyclic graph with order 5 or 6.

A 2-cyclic graph G of order n is defined to be the square of the cycle Cn, C2
n

is obtained from Cn by adding edges between all pairs of vertices of Cn which

are at distance 2 in Cn. See Figure 1.1.

                                           x1 

                                           x2 

                                                           x3 

                               xn-1 

                                   xn 

Figure 1.1:

He also showed that a 4-connected graph can be obtained from a 2-cyclic

graph by the following four operations: (i) adding edges, (ii) splitting ver-

tices, (iii) adding vertices and removing edges, and (iv) extending vertices.

Recently Ando, Egawa, Kawarabayashi and Kriesell [3] studied the number of
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contractible edges in 4-connected graph. In this thesis we shall focus on the

study of removable edges in 4-connected graphs.

In Chapter 2 we introduce some results obtained by Yin. Since those re-

sults are published in Chinese, for convenience, we repeat them in Chapter 2

together with their proofs. However, we use some new ideas in some of those

proofs.

In Chapter 3 we study how many removable edges may exist in a cycle of a

4-connected graph, and we give examples to show that our results are in some

sense the best possible.

In Chapter 4 we obtain results on removable edges in a longest cycle of a

4-connected graph. We also show that for a 4-connected graph G of minimum

degree at least 5 or girth at least 4, any edge of G is removable or contractible.

In Chapter 5 we study the distribution of removable edges on a Hamilton

cycle of a 4-connected graph, and show that our results cannot be improved

in some sense.

In Chapter 6 we prove that every 4-connected graph of order at least six

except C2
6 has at least (4|G|+16)/7 removable edges. We also give a structural

characterization of 4-connected graphs for which the lower bound is sharp.

In Chapter 7 we study how many removable edges there are in a spanning

tree of a 4-connected graph and how many removable edges exist outside a

cycle of a 4-connected graph. We also give examples to show that our results

can not be improved in some sense.
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1.1 Some Basic Notations and Definitions

In this section we give some basic terminologies, notations and definitions

which appear in this dissertation.

Without specific statement, in this thesis G always denotes a 4-connected

graph. The vertex set and edge set of G are denoted, respectively, by V (G) and

E(G). The order and size of G are denoted, respectively, by |G| and |E(G)|.
For x ∈ V (G), we simply write x ∈ G. The neighborhood of x ∈ G is the

set of all vertices of G that are adjacent to x, denoted by ΓG(x). The degree

of x is|ΓG(x)|, and is denoted by dG(x). If x and y are the two end-vertices

of an edge e, we write e = xy. For a nonempty subset N of V (G), the in-

duced subgraph by N in G is denoted by [N ]. Let A,B ⊂ V (G) such that

A 6= Ø 6= B and A ∩B = Ø. We define [A,B] = {xy ∈ E(G) | x ∈ A, y ∈ B}.
If H is a subgraph of G, we say that G contains H. For a subset S of V (G),

G − S denotes the graph obtained by deleting all the vertices in S from G

together with all the incident edges. If G − S is disconnected, we say that S

is a vertex-cut of G. If |S| = s for such an S, we say that S is an s-vertex-cut.

A cycle of G with l vertices is simply called an l-cycle of G. The girth of a

graph G is the smallest length of among cycles of G, and denoted by g(G).

Definition 1.1.1. Let G be a 4-connected graph. For an edge e of G, we

perform the following operations on G: First, delete the edge e from G, result-

ing in the graph G− e; Second, for each vertex x of degree 3 in G− e, delete

x from G− e and then completely connect the 3 neighbors of x by a triangle.

(See Figure 1.2). If multiple edges occur, we use single edges to replace them.

The final resultant graph is denoted by G ª e. If G ª e is still 4-connected,

then the edge e is called removable; otherwise, e is called unremovable. The

set of all removable edges of G is denoted by ER(G), whereas the set of un-

removable edges of G is denoted by EN(G). The numbers of removable edges

and unremovable edges are denoted by eR(G) and eN(G), respectively.

Definition 1.1.2. A 2-cyclic graph G of order n is defined to be the square

of the cycle Cn, i.e., G can be obtained from Cn by adding edges between all
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                             e                        x                                        y 

                                       y 

Figure 1.2:

pairs of vertices of Cn which are at distance 2 in Cn.

Definition 1.1.3. Let G be a 4-connected graph, and suppose that for

e = xy ∈ E(G) and S ⊂ V (G) such that |S| = 3, G − e − S has exactly two

(connected) components, say A and B, such that |A| ≥ 2 and |B| ≥ 2. Then

we say that (e, S) is a separating pair and (e, S; A,B) is a separating group, in

which A and B are called the edge-vertex-cut fragments. See Figure 1.3.

Definition 1.1.4. Let G be a 4-connected graph, for e = xy ∈ E(G) and

S ⊂ V (G) such that |S| = 3, G − e − S has exactly two (connected) compo-

nents, say A and B with |A| ≥ 2 and |B| ≥ 2. If |A| = 2, then A is called

an edge-vertex-cut atom. For an edge-vertex-cut atom A, let A = {x, z} and

S = {a, b, c}. If ax, bx ∈ E(G), cx /∈ E(G), then A is called a 1-edge-vertex-cut
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                              A                                                      B 

                                         S 

                            x                                                y 

Figure 1.3:

atom; whereas if ax, bx, cx ∈ E(G), then A is called a 2-edge-vertex-cut atom.

Both a 1-edge-vertex-cut atom and a 2-edge-vertex-cut atom are called 2-atom.

Since in a 4-connected graph every vertex has degree at least 4, it is easy to

see that if A is an edge-vertex-cut atom, then A is either a 1-edge-vertex-cut

atom or a 2-edge-vertex-cut atom.

Definition 1.1.5. Let G be a 4-connected graph, E0 ⊆ EN(G) such that

E0 6= Ø and let (xy, S; A,B) be a separating group of G such that x ∈ A and

y ∈ B. If xy ∈ E0, then A and B are called E0-edge-vertex-cut fragments. An

E0-edge-vertex-cut fragment is called an E0-edge-vertex-cut end-fragment of G

if it does not contain any other E0-edge-vertex-cut fragment of G as a proper

subset. Similarly, if |A| = 2, then A is called an E0-edge-vertex-cut atom.

It is easy to see that any E0-edge-vertex-cut fragment of G contains such

an end-fragment.

Definition 1.1.6. Let xy be an edge of a 4-connected graph G, and let G′ be

the simple graph obtained from G by first removing the edge xy, then iden-

tifying x and y by introducing a new vertex vxy and finally making the new
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vertex vxy adjacent to all vertices that are originally adjacent to x or y. We

call the edge xy contractible if G′ is still 4-connected; otherwise, it is called

non-contractible. The set of all contractible edges of G is denoted by EC(G).

Let G be a 4-connected noncomplete graph. Then it is easy to see that an

edge e = xy is non-contractible if and only if there exists a vertex-cut of G

with 4 vertices containing x and y.

1.2 Terminology and Notations for Subgraphs

with Special Structures

For convenience, we introduce the following special terminology and notations

for subgraphs with special structures in a graph G.

Definition 1.2.1. Let G be a 4-connected graph and H a subgraph of G such

that V (H) = {a, x1, x2, x3, x4, v1, v2, v3, v4} and E(H) = {ax1, ax2, ax3, ax4, x1x2,

x2x3, x3x4, x4x1, x1v1, x2v2, x3v3, x4v4}. If H satisfies the following conditions

(i) dG(a) = dG(xi) = 4 for i = 1, 2, 3, 4.

(ii) ax1, ax2, ax3, ax4 ∈ EN(G) and x1x2, x2x3, x3x4, x4x1 ∈ ER(G).

then H is called a helm, and the edges axi, for i = 1, 2, 3, 4, are called inner

edges of H, the vertices a, xi, for i = 1, 2, 3, 4, of a helm H are called inner

vertices of H. See Figure 1.4.

Definition 1.2.2. Let G be a 4-connected graph and H a subgraph of G such

that V (H) = {a, b, x1, x2, · · · , xl+3} and E(H) = {x1x2, x2x3, · · · , xl+2xl+3, ax2,

ax3, · · ·, axl+2, bx2, bx3, · · · , bxl+2} with l ≥ 1. If H satisfies the following con-

ditions

(i) xixi+1 ∈ EN(G), for i = 1, 2, · · · , l + 2,

(ii) axj, bxj ∈ ER(G), for j = 2, 3, · · · , l + 2,
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                                         a    x1 

                     x2 

                                   x3 

                                                    x4 

Removable edge 

Unremovable edge 

Figure 1.4:

(iii) dG(xj) = 4, for j = 2, 3, · · · , l + 2.

then H is called an l-bi-fan.

An l-bi-fan H is said to be maximal if ΓG(x1) 6= {a, b, x2, u} and ΓG(xl+3) 6=
{a, b, xl+2, v} for any u, v ∈ G. The edges xjxj+1 for j = 2, 3, · · · , l + 1 of an

l-bi-fan H are called inner edges of H, and the vertices xj for j = 2, 3, · · · , l+1

of an l-bi-fan H are called inner vertices of H. See Figure 1.5.

Definition 1.2.3. Let G be a 4-connected graph and H a subgraph of G

such that V (H) = {x1, x2, · · · , xl+2, y1, y2, · · · , yl+2} and E(H) = E1(H) ∪
E2(H), where E1(H) = {x1x2, x2x3, · · · , xl+1xl+2, y1y2, y2y3, · · · , yl+1yl+2} and
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                  x1 

                         x2 

                                     x3 

                                                      xl+2 

                                              xl+1 

                                     a                                            b 

Removable edge 

Unremovable edge 

Figure 1.5:

E2(H) = {y1x2, x2y2, y2x3, · · · , ylxl+1, xl+1yl+1, yl+1xl+2}. Then, H is called

an l-belt if the following conditions are satisfied

(i) E1(H) ⊆ EN(G) and E2(H) ⊆ ER(G),

(ii) d(xi) = d(yj) = 4, for i = 2, 3, · · · , l + 1; j = 2, 3, · · · l + 1.

An l-belt H is said to be maximal if ΓG(y1) 6= {x1, x2, y2, u} and ΓG(xl+2)

6= {xl+1, yl+1, yl+2, v} for any u, v ∈ G. The edges xixi+1, yjyj+1 for i =

2, 3, · · · , l + 1; j = 1, 2, · · · , l of an l-belt or a maximal l-belt H are called

inner edges of H, and the vertices xi, yj for i = 2, 3, · · · , l + 1; j = 2, 3, · · · l + 1

of an l-belt H are called inner vertices of H. See Figure 1.6.

Definition 1.2.4. Let G be a 4-connected graph and H a subgraph of G

such that V (H) = {x1, x2, · · · , xl+2, xl+3, y1, y2, · · · , yl+2} and E(H) = E1(H)∪
E2(H) where E1(H) = {x1x2, x2x3, · · · , xl+2xl+3, y1y2, y2y3, · · · , yl+1yl+2} and

E2(H) = {y1x2, x2y2, y2x3, · · · , ylxl+1, xl+1yl+1, yl+1xl+2, xl+2yl+2} with l ≥ 1

with l ≥ 1. Then, H is called an l-co-belt if the following conditions are satis-
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                       x1                  x2                                x3 

                                

                    xl+1                                                                  xl+2 

        y1                 y2                                    y3                                                                yl+1                                                               yl+2 

Removable edge 

Unremovable edge 

Figure 1.6:

fied

(i) E1(H) ⊆ EN(G) and E2(H) ⊆ ER(G),

(ii) dG(xi) = dG(yj) = 4 for i = 2, 3, · · · , l + 2; j = 2, 3, · · · l + 1.

An l-co-belt H is said to be maximal if ΓG(y1) 6= {x1, x2, y2, u} and ΓG(yl+2)

6= {xl+2, yl+1, xl+3, v}, for any u, v ∈ G. The edges xixi+1, yjyj+1, for i =

2, 3, · · · , l + 1; j = 1, 2, · · · , l + 1, of an l-co-belt H are called inner edges of H,

and the vertices xi, yj for i = 2, 3, · · · , l + 2; j = 2, 3, · · · l + 1 of an l-co-belt H

are called inner vertices of H. See Figure 1.6.

Definition 1.2.5. Let G be a 4-connected graph and H a subgraph of G such

that V (H) = {x1, x2, x3, y1, y2, y3, y4} and E(H) = {x1x2, x2x3, y1y2, y2y3, y3y4,

x1y2, x2y2, x2y3, x3y3}. Then H is called a W -framework if the following con-

ditions are satisfied:

(i) xixi+1 ∈ EN(G), for i = 1, 2,

(ii) dG(x2) = dG(y2) = dG(y3) = 4,

(iii) y2y3, x1y2, x2y2, x2y3, x3y3 ∈ ER(G).
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                 x2                                x3 

                                

                    xl+1                                                                  xl+2 

        y1                 y2                                    y3                                                                yl+1                                                               yl+2 

Removable edge 

Unremovable edge 

                     x1                                                                  xl+3 

Figure 1.7:

The edges x1x2, x2x3 of a W -framework H are called inner edges of H, the

vertex x2 of a W -framework H is called the inner vertex of H. See Figure 1.8.

     x1                                         x2                                                              x3 

y1                              y2                                                          y3                                                          y4 

Removable edge 

Unremovable edge 

Figure 1.8:

Definition 1.2.6. Let G be a 4-connected graph and H a subgraph of G such

that V (H) = {x1, x2, x3, y1, y2, y3, y4} and E(H) = {x1x2, x2x3, x1x3, y1y2, y2y3,

y3y4, x1y2, x2y2, x2y3, x3y3}. Then H is called a W ′-framework if the following

conditions are satisfied:
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(i) xixi+1 ∈ EN(G), for i = 1, 2,

(ii) dG(x2) = dG(x3) = dG(y2) = dG(y3) = 4 and dG(x1) ≥ 5,

(iii) y2y3, x1y2, x2y3, x3y3, x1x3 ∈ ER(G), x2y2 ∈ EN(G).

The edges x1x2, x2x3, x2y2 of a W ′-framework H are called inner edges of

H, the vertices x2, x3 of a W ′-framework H are called inner vertices of H. See

Figure 1.9.

     x1                                         x2                                                              x3 

                             y2                                                          y4 

Unremovable edge 

                          y1                                     y3 

                        Removable edges 

Figure 1.9:

1.3 Results on Removable Edges in 4-Connected

Graphs

First of all, we list some known results on removable edges of 4-connected

graphs, which can be found in [43].

Theorem 1.3.1. (Yin 1999) Let G be a 4-connected graph with |G| ≥ 7.

An edge e of G is unremovable if and only if there is a separating pair (e, S),

or a separating group (e, S; A,B) in G.



14 CHAPTER 1. INTRODUCTION

Theorem 1.3.2. (Yin 1999) Let G be a 4-connected graph with |G| ≥ 8

and let (xy, S; A,B) be a separating group of G such that x ∈ A, y ∈ B and

|A| ≥ 3. Then every edge in [{x}, S] is removable.

Corollary 1.3.1. (Yin 1999) Let G be a 4-connected graph with |G| ≥ 8.

Then every triangle of G contains at least one removable edge.

Theorem 1.3.3. (Yin 1999) Let G be a 4-connected graph with |G| ≥ 7.

If for an unremovable edge xy, i.e., xy ∈ EN(G), there is a separating group

(xy, S; A,B), then all the edges in E([S]) are removable, i.e., E([S]) ⊂ ER(G).

In addition, Yin studied the number of removable edges and contractible

edges. Let H be the set of contractible edges or removable edges of G, and let

k denote the number of helms, which are contained in the 4-connected graphs.

Then the following result holds:

Theorem 1.3.4. (Yin 1999) Let G be a 4-connected graph with order n,

(n ≥ 5), G 6= C2
5 and G 6= C2

6 , m is the number of vertices of degree four, then

|H| ≥ d(3n + 7k − 2m)/2e ≥ dn/2e.

In this dissertation we first study the distribution of removable edges in

some special subgraphs of a 4-connected graph.

In Chapter 3 we study the distribution of removable edges in a cycle in a

4-connected graph. For this purpose we need the following technical lemma

the proof of which appears in Chapter 3.

Lemma 1.3.1. Suppose that G is a 4-connected graph, (xy, S; A,B) is a

separating group of G such that x ∈ A, y ∈ B, S = {a, b, c} and A is a 1-edge-

vertex atom, say A = {x, z}. Then precisely one of the following conclusions

holds:

(i) ax, bx, zx ∈ ER(G).

(ii) ax ∈ EN(G), d(x) = d(z) = 4, bx, zx, az ∈ ER(G), zc ∈ EN(G).
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(iii) ax ∈ EN(G), ay ∈ ER(G). Moreover, if d(a) = 4, d(y) ≥ 5, then

az, zb, zx, by ∈ ER(G), bx ∈ EN(G); if d(a) ≥ 5, d(y) = 4, then by, bx, bz, az ∈
ER(G), zx ∈ EN(G); if d(a) = d(y) = 4, then az, bz, by ∈ ER(G), bx, zx ∈
EN(G); if d(a) ≥ 5, d(y) ≥ 5, then az, zx, bx, by ∈ ER(G).

(iv) ax, bx, ac, bc ∈ ER(G), zx, zc ∈ EN(G), {za, zb} ∩ EN(G) 6= Ø, d(x) =

d(c) = d(z) = 4. If za ∈ EN(G), then the following conclusion holds: d(b) = 4,

and if d(a) = 4, then bz ∈ EN(G); if d(a) ≥ 5, then bz ∈ ER(G). If

bz ∈ EN(G), then the following conclusion holds: d(a) = 4, and if d(b) = 4,

then az ∈ EN(G); if d(b) ≥ 5, then az ∈ ER(G).

(v) ax, bx, az, bz ∈ ER(G), xz ∈ EN(G), d(x) = d(z) = 4.

(vi) bx ∈ EN(G), by ∈ ER(G). Moreover, if d(b) = 4, d(y) ≥ 5, then

bz, za, zx, ay ∈ ER(G), ax ∈ EN(G); if d(b) ≥ 5, d(y) = 4, then ay, ax, az, bz ∈
ER(G), zx ∈ EN(G); if d(b) = d(y) = 4, then bz, az, ay ∈ ER(G), ax, zx ∈
EN(G); if d(b) ≥ 5, d(y) ≥ 5, then bz, zx, ax, ay ∈ ER(G).

(vii) bx ∈ EN(G), d(x) = d(z) = 4, ax, zx, bz ∈ ER(G), zc ∈ EN(G).

From the above lemma, we directly obtain the following conclusion.

Corollary 1.3.2. Let G be a 4-connected graph with (xy, S; A,B) a separating

group of G such that x ∈ A, y ∈ B, S = {a, b, c}. Let A be a 1-edge-vertex-cut

atom, say A = {x, z}, If {xa, xb, xz} ∩ EN(G) 6= Ø, then x is an inner vertex

of one of the following subgraphs in G: helm, l-co-belt, l-belt, W ′-framework,

W -framework or l-bi-fan.

For a 2-edge-vertex-cut atom, we get the following result of which proof is

in Chapter 3.

Lemma 1.3.2. Let G be a 4-connected graph, (xy, S; A,B) a separating

group of G, A a 2-edge-vertex-cut atom, say A = {x, z} and S = {a, b, c}.
Then ax, bx, cx, xz ∈ ER(G).
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For convenience we denote by < the set of all helms, maximal l-bi-fans,

maximal l-belts, maximal l-co-belts, W -frameworks and W ′-frameworks of a

graph G.

Definition 1.3.1. Let C be a cycle of a 4-connected graph G and H a sub-

graph of G belonging to <. If C contains an inner vertex of H, then we say

that C passes through H.

In Chapter 3 we will prove that for a cycle in a 4-connected graph, the

following conclusions hold.

Theorem 1.3.5. Let G be a 4-connected graph and C a cycle of G. If C does

not pass through any subgraph of G belonging to <, then there are at least two

removable edges of G in C.

Theorem 1.3.6. Let G be a 4-connected graph and C a cycle of G. If C

passes through only one subgraph of G belonging to <, then there exists at least

one removable edge of G in C.

We also present examples in Chapter 3 to show that in some sense the

above two results are the best possible.

We obtain the following result on removable edges and contractible edges

in Chapter 4:

Theorem 1.3.7. Let G be a 4-connected graph with |G| ≥ 8 such that

δ(G) ≥ 5 or g(G) ≥ 4. Then any edge of G is removable or contractible.

For removable edges on a longest cycle in a 4-connected graph, we get the

following results in Chapter 4.

Definition 1.3.2. Let G be a 4-connected graph and H a subgraph of G. If

V (H) = {u, v, x, z}, E(H) = {xz, ux, vx, uz, vz} and d(x) = d(z) = 4, then H

is called a bi-triangle, and x, z are called its inner vertices. If a cycle C of G

contains the vertices u, v, x and z, we say that C passes through the bi-triangle
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H.. See Figure 1.10.

u 
                                                       v 

                                         x 

                                          z 

                                 bi-triangle 

Figure 1.10:

Theorem 1.3.8. Let G be a 4-connected graph with |G| ≥ 8. If a longest

cycle C of G does not pass through any bi-triangle, then C contains at least

two removable edges.

Theorem 1.3.9. Let G be a 4-connected graph with |G| ≥ 8. If a longest

cycle C of G passes through at most one bi-triangle, then C contains at least

one removable edge.

In Chapter 5 we study the distributions of removable edges in Hamilton

cycles in 4-connected Hamilton graphs. The following lemma of which proof

can be found in Chapter 5 is necessary for our main results.

Lemma 1.3.3. Let G be a 4-connected graph, E0 ⊂ EN(G) and E0 6= Ø.

Let (xy, S; A,B) be a separating group of G such that x ∈ A, y ∈ B, S =

{a, b, c}, xy ∈ E0. If A is an E0-edge-vertex end-fragment of G, and |A| ≥ 3,

then one of the following conclusions holds:

(i) (E(A) ∪ [A, S]) ∩ E0 = Ø.

(ii) There exists a separating group (x′y′, S ′; A′, B′) of G such that x′ ∈ A′, y′ ∈
B′, x′y′ ∈ E0, B′ is a 1-edge-vertex-cut atom, and |A ∩B′| = |B′ ∩ S| = 1.
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(iii) There exists a separating group (xy′, S ′; A′, B′) of G such that x ∈ A′, y′ ∈
B′, xy′ ∈ E0, A ∩ A′ = {x}, |A ∩ S ′| = 1, A ∩B′ = {y′}, |B′ ∩ S| = 2.

Based on the above lemma, we show the following result on removable

edges in a Hamilton cycle of a 4-connected Hamilton graph in Chapter 5:

Theorem 1.3.10. Let G be a 4-connected graph with |G| ≥ 7, C a Hamilton

cycle of G. If C does not pass through any 2-atom of G, then there are at least

three removable edges on C.

The following lemma of which proof is in Chapter 5 is used in the proof of

the Theorem 1.3.11.

Lemma 1.3.4. Let G be a 4-connected graph with |G| ≥ 7, and let C be a

cycle which exactly contains one inner vertex of some maximal l-bi-fan H, and

C does not pass through any other subgraph belonging to <, then there are at

least two removable edges on C.

Theorem 1.3.11. Let G be a 4-connected graph with |G| ≥ 7, C a Hamilton

cycle of G. If C passes through only one subgraph (excluding maximal l-belt

or l-co-belt) belonging to <, and doesn’t pass through any maximal l-belt or

l-co-belt, there are at least two removable edges on C.

In Chapter 6, we obtain a lower bound on the number of removable edges

in a 4-connected graph, and give a structural characterization of 4-connected

graphs for which the lower bound is sharp. In order to derive these results

we first prove the following lemma in Chapter 6 and deduce two other results

which we list here without proofs.

Lemma 1.3.5. There is no common inner edge between any two different

subgraphs of G in <.

The proof of the main result in Chapter 6 is by induction, and is based on

the following two results.
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Theorem 1.3.12 Let G be a 4-connected graph and F a maximal l-bi-fan of

G with l ≥ 2. Then there exists an edge e′ in F such that e′ ∈ ER(G) and

eR(G) ≥ eR(Gª e′) + 1.

Theorem 1.3.13 Let G be a 4-connected graph and L a maximal l-belt of

G with l ≥ 3. Then there exists an edge e′ in E(G) such that eR(G) ≥
eR(Gª e′) + 2.

In the next paragraph we are going to list another result obtained in Chap-

ter 6. Before we can formulate this result we need a definition.

A 4-connected graph G is said to have property (?) if there does not exist

any edge xy ∈ ER(G) such that both d(x) ≥ 5 and d(y) ≥ 5.

If the subgraph of a 4-connected graph G induced by EN(G) is a forest,

then it is easy to get the bound of the number of removable edges of G; if a

4-connected graph G contains a cycle C such that E(C) ⊂ EN(G), then we

have the following result holds.

Theorem 1.3.14 Let G be a 4-connected graph with property (?), |G| ≥ 8,

and let C ′ be a cycle of G. If C ′ does not contain any removable edges of G,

then G has one of the following structures as subgraph: l-belt, l-bi-fan (l ≥ 1),

W -framework, W ′-framework or helm, such that the subgraph intersects C ′ at

some of its inner edge(s).

The following three results are used in the proof of our main results.

Theorem 1.3.15 Let G be a 4-connected graph with property (?). Suppose, H

is a helm of G as in Definition 1.2.1. Let V (H) = {a, x1, x2, x3, x4, v1, v2, v3, v4}
and let P = y1y2 · · · yh be a path in [EN(G)] with h ≥ 2 such that a /∈ V (P ) and

{y1, yh} ⊂ {x1, x2, x3, x4}. Then G contains one of the following structures H1

as its subgraph: l-belt, l-bi-fan, (l ≥ 1), W -framework, W ′-framework or helm,

such that at least one inner edge of H1 belongs to E(P ∪ H), and H and H1

do not have any common inner edge.
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Theorem 1.3.16 Let G be a 4-connected graph with property (?) and L1 a

maximal 1-belt of G as in Definition 1.2.3 such that V (L1) = {x1, x2, x3, y1, y2,

y3}. Suppose that P = l1l2 · · · lh is a path of [EN(G)] such that {l1, lh} ⊂
{x1, x3, y1, y3} and {x2, y2}∩V (P ) = Ø. Then G contains one of the following

structures L′ as subgraph: l-belt, (l ≥ 1), helm, W -framework, W ′-framework

or l-bi-fan, (l ≥ 1), such that at least one inner edge of L′ belongs to E(P∪L1).

Theorem 1.3.17 Let G be a 4-connected graph with property (?) and L′1 a

maximal 1-co-belt of G as in Definition 1.2.4 with V (L′1) = {x1, x2, x3, x4, y1, y2,

y3}. Suppose that P = l1l2 · · · lh is a path of [EN(G)] such that {x2, x3, y2} ∩
V (P ) = Ø and {l1, lh} ⊂ {x1, x4, y1, y3}. Then, G contains one of the fol-

lowing structures as subgraph: l-belt, (l ≥ 1), W -framework, W ′-framework,

helm or l-bi-fan, (l ≥ 1), such that it has some inner edge(s) belonging to E(P ).

In the following we describe the construction of graphs for which our lower

bound is sharp:

Let M be a 5-wheel such that V (M) = {a, x, y, z, v} and a is its center. Let

T1, T2, T3, T4 be four trees such that for each i ∈ {1, 2, 3, 4}, Ti has k vertices of

degree one and |Ti|−k vertices of degree four. Let the vertices of degree four be

ui
(1), ui

(2), · · · , ui
(|Ti|−k), and the vertices of degree one be xi

(1), xi
(2), · · · , xi

(k).

Let M1,M2, · · · ,Mk be k copies of M and a(j), x(j), y(j), z(j), v(j) the ver-

tices of Mj corresponding to the vertices a, x, y, z, v of M , respectively, where

j = 1, 2, · · · , k. For each j ∈ {1, · · · , k}, identify x1
(j), x2

(j), x3
(j), x4

(j) with

x(j), y(j), z(j), v(j) such that each of x1
(j), x2

(j), x3
(j), x4

(j) corresponds to one

and only one of x(j), y(j), z(j), v(j). Denote the resulting graph by G. It is easy

to see that G is 4-connected.

Next we will show that for each 4-cycle C = x(j)y(j)z(j)v(j)x(j) of G,

we have that E(C) ⊂ ER(G), and the other edges in G are unremovable,

where j = 1, 2, · · · , k. For y(j)ui
(l) ∈ E(G), let S = {x(j), v(j), z(j)}, A =

{a(j), y(j)}, B = G − y(j)ui
(l) − S − A. Then (y(j)ui

(l), S; A,B) is a separat-

ing group of G, and hence y(j)ui
(l) ∈ EN(G). By symmetry, we can show
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that x(j)ui
(l), z(j)ui

(l), v(j)ui
(l) ∈ EN(G), where j = 1, 2, · · · , k; i = 1, 2, 3, 4; l =

1, 2, · · · , |T | − k. For each edge a(j)x(j), it is easy to see that (a(j)x(j), T ) is a

separating pair of G such that T = {y(j), v(j), ui
(j)} and ui

(l)z(j) ∈ E(G). By

symmetry, a(j)y(j), a(j)z(j), a(j)v(j) ∈ EN(G). Using Corollary 1.3.1 it is easy to

see that for each 4-cycle C = x(j)y(j)z(j)v(j)x(j), we have E(C) ⊂ ER(G). For

each edge e of Ti, for example, e = u1
(l)u1

(l+1), it is easy to see that (e, S) is a

separating pair of G such that S = {u2
(l), u3

(l), u4
(l)}. Therefore, for each edge

e of Ti, where i = 1, 2, 3, 4, we have that e ∈ EN(G), and so eR(G) = 4k, |Ti| =
(3k− 2)/2, (i = 1, 2, 3, 4), |G| = 7k− 4, eR(G) = (4|G|+ 16)/7. We denote the

set of all these constructed graphs by =. See Figure 1.11.

Removable edge 

Unremovable edge 

Figure 1.11:

Now our main result of which proof can be found in Chapter 6 is as follows:



22 CHAPTER 1. INTRODUCTION

Theorem 1.3.18. Let G be a 4-connected graph of order at least 5. If G is

neither C2
5 nor C2

6 , then eR(G) ≥ (4|G| + 16)/7 and the equality holds if and

only if G ∈ =.

In addition, we study the distribution of removable edges in a spanning

tree or outside a cycle in a 4-connected graph in Chapter 7. We obtain the

following results.

Theorem 1.3.19 Let G be a 4-connected graph which does not contain any

subgraph belonging to <. Then any spanning tree T of G contains at least one

removable edge.

We can give an example to show that the above result cannot be improved.

For the distribution of removable edges outside a cycle in a 4-connected

graph, we present the following results together with examples that show the

results are in some sense best possible.

Theorem 1.3.20 Let G be a 4-connected graph and C a cycle of G. If C does

not pass through any l-belt or l-co-belt, then there are at least two removable

edges outside C.

Theorem 1.3.21 Let G be a 4-connected graph and C a cycle of G. If C

passes through only one l-belt or l-co-belt, then there is at least one removable

edge outside C.



Chapter 2

Removable edges in 4-connected
graphs and the structure of
4-connected graphs

In this chapter we introduce some results which were obtained by Yin. Since

those results are published in Chinese, for convenience, we present them here

together with their proofs. We use some new ideas in some of the proofs of

the results.

2.1 Some results and their proofs

The following results on the properties of removable edges in 4-connected

graphs will be used frequently in this dissertation, but were obtained by Yin

in [43].

First, we list the following result which holds clearly, so we omit its proof.

Theorem 2.1.1. Let G be a 4-connected graph with |G| ≥ 7. An edge e of G

is unremovable if and only if there is a separating pair (e, S), or a separating

group (e, S; A,B) in G.

Theorem 2.1.2. Let G be a 4-connected graph with |G| ≥ 8 and (xy, S; A,B)

a separating group of G such that x ∈ A, y ∈ B and |A| ≥ 3. Then every edge

23



24 CHAPTER 2. THE STRUCTURE OF 4-CONNECTED GRAPHS

in [{x}, S] is removable.

Proof. By contradiction. Let e = xu such that u ∈ S. And suppose

xu ∈ EN(G). Consider the corresponding separating group (xu, T ; C, D) such

that x ∈ C, u ∈ D. Let

X1 = (C ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T )

X2 = (A ∩ T ) ∪ (S ∩ T ) ∪ (S ∩D)

X3 = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T )

X4 = (B ∩ T ) ∪ (S ∩ T ) ∪ (C ∩ S)

We distinguish two cases to complete the proof.

Case 1. y ∈ B ∩ C.

Since y ∈ B ∩ C, X4 is a vertex-cut of G − xy. Since G is a 4-connected

graph, |X4| ≥ 3. Noticing that |X2| + |X4| = |S| + |T | = 6, we get |X2| ≤ 3,

so A ∩D = Ø. We claim that B ∩D 6= Ø: otherwise, B ∩D = Ø, implying

|D ∩ S| ≥ 2, so |S ∩ (C ∪ T )| ≤ 1, and hence |B ∩ T | ≥ 2. From |T | = 3

we can get that |A ∩ T | ≤ 1, and so |X1| ≤ 2. Since |A| ≥ 3, we have that

|A∩C| ≥ 2, But now it can be checked easily that {x} ∪X1 is a vertex-cut of

G with cardinality less than 4, a contradiction. So B ∩D 6= Ø, and |X3| ≥ 4.

From |X1| + |X3| = 6 we get |X1| ≤ 2. By a similar argument as before this

implies {x}∪X1 is a vertex-cut of G with cardinality less than 4, a contradic-

tion. Therefore, Case 1. does not occur.

Case 2. y ∈ B ∩ T .
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First, we claim that A∩C = {x}. Otherwise, suppose |A∩C| ≥ 2. We first

claim that |X1| ≥ 3: otherwise, |X1| ≤ 2, and then {x} ∪X1 is a vertex-cut of

G with cardinality less than 4, a contradiction. So |X1| ≥ 3, and so |X3| ≤ 3,

which implies that B ∩ D = Ø. First consider the case that A ∩ D = Ø.

Then |D ∩ S| ≥ 2 and |S ∩ (C ∪ T )| ≤ 1. Since |X1| ≥ 3, |A ∩ T | ≥ 2,

and hence |B ∩ T | = 1. Now it can be checked easily that |X4| ≤ 2, hence

B ∩ C = Ø, and so |B ∩ T | = 1, which contradicts |B| ≥ 2. Consequently we

may assume A ∩D 6= Ø, and so |X2| ≥ 4. By symmetry, we can assume that

B ∩C 6= Ø, and so |X4| ≥ 4. But now |X2|+ |X4| ≥ 8, which contradicts that

|X2|+|X4| = |S|+|T | = 6. This contradiction confirms that A∩C = {x}. Since

A and B are connected subgraphs of G, we have that A ∩ T 6= Ø, C ∩ S 6= Ø.

If S ∩ T = Ø, it can be checked easily that |C ∩ S| = |A ∩ T | = 1 and

|B ∩ T | = |D ∩ S| = 2. Then we have that A ∩ D = Ø = B ∩ C. This

implies that |A| = |C| = 2, which contradicts |A| ≥ 3. So, S ∩ T 6= Ø, Then

|C ∩ S| = |A ∩ T | = |S ∩ T | = |B ∩ T | = |D ∩ S| = 1. It is easy to see that

|X2| = |X4| = 3, so A ∩ D = Ø = B ∩ C, which contradicts |A| ≥ 3. This

complete the proof of Theorem 2.1.2.¤

Corollary 2.1.3. Let G be a 4-connected graph with |G| ≥ 8. Then every

3-cycle of G contains at least one removable edge.

Theorem 2.1.4. Let G be a 4-connected graph with |G| ≥ 7. If for an unre-

movable edge xy, i.e., xy ∈ EN(G), there is a separating group (xy, S; A,B),

then all the edges in E([S]) are removable.

Proof. Let ab ∈ EN(G) ∩ E([S]), and consider the corresponding separating

group (ab, T ; C, D) such that a ∈ C, b ∈ D. Let X1, X2, X3, X4 be defined as

in the proof of Theorem 2.1.2. We distinguish the following cases to complete

the proof.

Case 1. x ∈ A ∩ C.

We deal with the following subcases separately.

Subcase 1.1. y ∈ B ∩ C.
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Since X1 is a vertex-cut of G−xy, |X1| ≥ 3. So |X3| ≤ 3, and so B∩D = Ø.

Similar arguments yield A ∩ D = Ø. Since D = D ∩ S, |D ∩ S| ≥ 2, which

implies that |D ∩ S| = 2 and C ∩ S = {a}. It is easy to see that S ∩ T = Ø.

Since |X1| ≥ 3, |A ∩ T | ≥ 2. But then |X4| ≤ 2, a contradiction.

Subcase 1.2. y ∈ B ∩ T .

From |X1| ≥ 3 we get that |X3| ≤ 3, hence B∩D = Ø. If A∩T = Ø, since

A is a connected subgraph of G, A ∩D = Ø. Then we have |A ∩ C| ≥ 2, and

|S ∩D| ≥ 2, which contradicts |X1| ≥ 3. So A ∩ T 6= Ø. If A ∩D 6= Ø, then

|X2| ≥ 4. Since |X2| + |X4| = 6, we get |X4| ≤ 2, and so B ∩ C = Ø, which

implies |B∩T | ≥ 2. Now it is checked readily that |X2| ≤ 3, which contradicts

|X2| ≥ 4. So A ∩D = Ø. Then |S ∩D| = 2 and S ∩ T = Ø. Since |X1| ≥ 3,

we get |A ∩ T | = 2 and B ∩ T = {y}. Hence |X4| = 2, so B ∩ C = Ø, and

B = B ∩ T = {y}, which contradicts |B| ≥ 2.

Case 2. x ∈ A ∩ T .

We deal with the following subcases:

Subcase 2.1. y ∈ B ∩ T .

We claim that S ∩ T = Ø. Otherwise, we have |X1| = |X2| = |X3| =

|X4| = 3. Since G is 4-connected graph, we have A ∩ C = Ø = A ∩ D and

B ∩ C = Ø = B ∩ D, a contradiction. By symmetry, we may assume that

|A ∩ T | = 2, so either |C ∩ S| = 2 or |D ∩ S| = 2. Without loss of generality,

we may assume |C ∩ S| = 2, then we will have that A ∩D = Ø = B ∩D, and

D = S ∩D = {b}, which contradicts |D| ≥ 2.

Subcase 2.2. y ∈ B ∩ C.

By symmetry, we may treat this as in Subcase 1.2 of Case 1.

Subcase 2.3. y ∈ B ∩D.
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By symmetry, we may treat this as in Subcase 1.2 of Case 1.

Case 3. x ∈ A ∩D.

We may treat this as in Case 1.

The proof of Theorem 2.1.4 is complete. ¤

2.2 A Characterization of 4-Connected Graphs

Here we present the method due to Yin [43] for constructing all 4-connected

graphs from the 2-cyclic graphs. Since we do not use those results in the other

chapter, we omit the proof of the following results.

Lemma 2.2.1. Let G be a 4-connected graph with |G| ≥ 7, and let z ∈ V (G)

such that d(z) ≥ 6. We split vertex z into two vertices x and y, and join x to y.

Then the neighbors of z to either x or y in such a way that d(x) ≥ 4, d(y) ≥ 4.

Then the resultant graph G′ is 4-connected.

The above operation from G to G′ in Lemma 2.2.1 is called vertex splitting.

Let F1 denote the graph with V (F1) = {x1, x2, x3, x} and E(F1) = {x1x2, x2x3,

x3x1, xx1}.

Lemma 2.2.2. Let G be a 4-connected graph, and suppose G contains F1 as

a subgraph. We add one vertex y and four edges yx1, yx2, yx3, yx to G. If we

delete any of the edges {x1x2, x1x3, x2x3} in such a way that in the new graph

G′ all vertices have degree at least four, then G′ is 4-connected.

The above operations from G to G′ are called F1-operations.

Let F2 denote the graph with V (F2) = {z, a1, a2, a3, a4, a5, a6} and E(F2) =
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{za1, za2, za3, za4, za5, za6, a1a2, a3a4, a5a6}.

Lemma 2.2.3. Let G be a 4-connected graph with |G| ≥ 7, and suppose G

contains F2 as a subgraph with dG(z) = 6. We extend vertex z into a 3-cycle

z′xyz′, join x to vertices a1, a2, y, z′, y to vertices a3, a4, x, z′ and z′ to vertices

a5, a6, x, y. The new graph G′ is 4-connected.

The above operation from G to G′ is called vertex extension.

Theorem 2.2.5. G is a 4-connected graph if and only if either G is a 2-cyclic

graph or G can be obtained from a 2-cyclic graph by applying the following four

operations: (i) adding edges, (ii) vertex splitting, (iii) F1-operation and (iv)

vertex extension.



Chapter 3

Removable Edges in a Cycle of
a 4-Connected Graph

In this chapter we investigate how many removable edges there are in a cycle

of a 4-connected graph, and give examples to show that our results are in some

sense best possible.

3.1 Some Preliminary Results

In this chapter we shall obtain lower bounds on the number of removable edges
in a cycle of a 4-connected graph. Before we present and can prove our main
results, we need to prove some lemmas. The following lemma is a key ingredi-
ent for the proof of our main results.

Lemma 3.1.1. Let G be a 4-connected graph, (xy, S; A,B) be a separating
group of G such that x ∈ A, y ∈ B, S = {a, b, c} and A be a 1-edge-vertex
atom, say A = {x, z}. Then one of the following conclusions holds:

(i) ax, bx, zx ∈ ER(G).

(ii) ax ∈ EN(G), d(x) = d(z) = 4, bx, zx, az ∈ ER(G), zc ∈ EN(G).

(iii) ax ∈ EN(G), ay ∈ ER(G). Moreover, if d(a) = 4, d(y) ≥ 5, then

az, zb, zx, by ∈ ER(G), bx ∈ EN(G); if d(a) ≥ 5, d(y) = 4, then by, bx, bz, az ∈
ER(G), zx ∈ EN(G), if d(a) = d(y) = 4, then az, bz, by ∈ ER(G), bx, zx ∈

29
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EN(G), if d(a) ≥ 5, d(y) ≥ 5, then az, zx, bx, by ∈ ER(G).

(iv) ax, bx, ac, bc ∈ ER(G), zx, zc ∈ EN(G), {za, zb} ∩ EN(G) 6= Ø, d(x) =

d(c) = d(z) = 4. If za ∈ EN(G), then the following conclusion holds: d(b) = 4,

and if d(a) = 4, then bz ∈ EN(G); if d(a) ≥ 5, then bz ∈ ER(G) holds. If

bz ∈ EN(G), then the following conclusion holds: d(a) = 4, and if d(b) = 4,

then az ∈ EN(G); if d(b) ≥ 5, then az ∈ ER(G).

(v) ax, bx, az, bz ∈ ER(G), xz ∈ EN(G), d(x) = d(z) = 4.

(vi) bx ∈ EN(G), by ∈ ER(G). Moreover, if d(b) = 4, d(y) ≥ 5, then

bz, za, zx, ay ∈ ER(G), ax ∈ EN(G); if d(b) ≥ 5, d(y) = 4, then ay, ax, az, bz ∈
ER(G), zx ∈ EN(G), if d(b) = d(y) = 4, then bz, az, ay ∈ ER(G), ax, zx ∈
EN(G), if d(b) ≥ 5, d(y) ≥ 5, then bz, zx, ax, ay ∈ ER(G).

(vii) bx ∈ EN(G), d(x) = d(z) = 4, ax, zx, bz ∈ ER(G), zc ∈ EN(G).

Proof. If ax, bx, zx ∈ ER(G), then conclusion (i) holds. So, we may assume

that {ax, bx, zx} ∩ EN(G) 6= Ø. Next we will distinguish the following cases

to complete the proof.

Case 1. ax ∈ EN(G).

Then we consider the corresponding separating group (ax, T ; C, D) such

that x ∈ C, a ∈ D, and so, x ∈ A ∩ C, y ∈ B ∩ (C ∪ T ). Let

X1 = (C ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T )

X2 = (A ∩ T ) ∪ (S ∩ T ) ∪ (S ∩D)

X3 = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T )

X4 = (B ∩ T ) ∪ (S ∩ T ) ∪ (C ∩ S)
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We distinguish a number of subcases.

Subcase 1.1. y ∈ B ∩ C.

Since |A| = 2 and A is a connected subgraph of G, we have A ∩ D = Ø.

First, we claim that A ∩ T 6= Ø. Otherwise, A ∩ T = Ø, and so |A ∩ C| = 2.

Since a ∈ S ∩D, we have |X1| ≤ 2. Then X1 ∪ {x} is a vertex-cut of G with

cardinality less than 4, a contradiction. Hence, A∩T = {z}. Second, we claim

that S ∩ T = Ø. Otherwise, S ∩ T 6= Ø, and a contradiction will be deduced

as follows: If B ∩ T = Ø, since B is a connected subgraph of G, we have

B∩D = Ø. Then B = B∩C, and so |S∩T | = 2. Noticing that a ∈ S∩D and

|S| = 3, we have S∩C = Ø. Since |B| ≥ 2, we know that |B∩C| ≥ 2. Then it

is easy to see that {y}∪(S∩T ) is a vertex-cut of G with cardinality less than 4,

a contradiction. So, B ∩ T 6= Ø, and so |S ∩ T | = 1. Noticing that |T | = 3, we

have |B∩T | = 1. Since X4 is a vertex-cut of G−xy, we have |X4| ≥ 3, and so

|S∩C| ≥ 1. Since S∩D 6= Ø, by noticing that |S| = 3, we have |S∩D| = 1, i.e.,

S∩D = {a}. Note that |X3| = 3. Since G is 4-connected, we have B∩D = Ø.

Hence, D = {a}, which contradicts |D| ≥ 2. Therefore, S ∩ T = Ø. Note that

|B ∩ T | = 2. If |S ∩D| = 1, by similar arguments we can get that D = {a}, a

contradiction. So, |S∩D| ≥ 2. Since |X4| ≥ 3, we have |S∩C| ≥ 1. Therefore,

|S ∩C| = 1 and |S ∩D| = 2. Since bx ∈ E(G), obviously we have b ∈ X1, and

so S ∩C = {b}. Then S ∩D = {a, c}, ΓG(x) = {a, b, y, z}, ΓG(z) = {x, a, b, c}.
We claim that xz ∈ ER(G). Otherwise, xz ∈ EN(G), and we consider the

corresponding separating group (xz, S ′; A′, B′) such that x ∈ A′, z ∈ B′. Since

xzax is a 3-cycle of G, we have that a ∈ S ′ and ax ∈ EN(G). By Theorem

2.1.2 we know that |A′| = 2, say A′ = {x, v1}. Then we have that axv1a is a

3-cycle of G and v1 6= z, which is impossible, and so xz ∈ ER(G). We claim

that az ∈ ER(G). Otherwise, az ∈ EN(G), and we consider the corresponding

separating group (az, S ′; A′, B′) such that a ∈ A′, z ∈ B′. Obviously, x ∈ S ′.

Since ax ∈ EN(G), by Theorem 2.1.2 we have |A′| = 2, say A′ = {a, v1}. Then

axv1a is a 3-cycle of G and v1 6= z, which is impossible, and so az ∈ ER(G).
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Let S ′ = {x} ∪ (B ∩ T ), A′ = C ∩ (B ∪ S), B′ = G − bz − S ′ − A′. Then

(bz, S ′; A′, B′) is a separating group of G, and so bz ∈ EN(G). We claim that

bx ∈ ER(G). Otherwise, bx ∈ EN(G), and we consider the corresponding sep-

arating group (bx, S ′; A′, B′) such that b ∈ A′, x ∈ B′. Since bxzb is a 3-cycle of

G, we have z ∈ S ′. Since bz ∈ EN(G), we have |A′| = 2, say A′ = {b, v1}. Then

bv1zb is a 3-cycle of G, and v1 6= x, which is impossible. Hence bx ∈ ER(G).

Let S1 = {a, b, y}, then (zc, S1) is a separating pair of G, and so zc ∈ EN(G).

Obviously, d(x) = d(z) = 4. Hence, conclusion (ii) holds.

Subcase 1.2. y ∈ B ∩ T .

Since xy ∈ EN(G), by Theorem 2.1.2 we have |C| = 2. If |A∩C| = 2, then

we have A = A ∩ C = C. Since B ∩ T 6= Ø 6= S ∩ D, we have |S ∩ T | ≤ 2.

It is easy to see that {x} ∪X1 is a vertex-cut of G with cardinality less than

4, a contradiction. So A ∩ C = {x}. Since A and C are connected sub-

graphs of G, we have that |S ∩ C| = |A ∩ T | = 1 and B ∩ C = Ø = A ∩ D.

We claim that S ∩ T = Ø. Otherwise, |S ∩ T | = 1, and so |B ∩ T | = 1.

Note that |X3| = 3. Since G is 4-connected, we have B ∩ D = Ø, and so

B = B ∩ T = {y}, which contradicts |B| ≥ 2. Therefore, S ∩ T = Ø, and so

|B ∩ T | = |S ∩D| = 2. From ΓG(x) = {z, b, a, y} we know that S ∩ C = {b},
and so S ∩ D = {a, c}, A ∩ T = {z}. Let B ∩ T = {u, y}. Next we will deal

with the following subcases.

Subcase 1.2.1. ay 6∈ E(G).

We claim that xz ∈ ER(G). Otherwise, xz ∈ EN(G). We consider the

corresponding separating group (xz, S ′; A′, B′) such that z ∈ A′, x ∈ B′.

Since azxa is a 3-cycle of G, we have a ∈ S ′. Since ax ∈ EN(G), by The-

orem 2.1.2 we have that |B′| = 2, say B′ = {x, v1}. Then axv1a is a 3-

cycle of G. However, ay /∈ E(G) and v1 6= z, which is impossible. Hence,

xz ∈ ER(G). By symmetry, bx ∈ ER(G). We claim that az ∈ ER(G).

Otherwise, az ∈ EN(G). We consider the corresponding separating group

(az, S ′; A′, B′) such that a ∈ A′, z ∈ B′. Since azxa is a 3-cycle of G, we

have x ∈ S ′. Since ax ∈ EN(G), we have that |A′| = 2, say A′ = {a, v1}.
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Then axv1a is a 3-cycle of G, and analogous arguments yield a contradiction.

So az ∈ ER(G). By symmetry, by ∈ ER(G). Let S ′ = {a, b, y}. Obviously,

(zc, S ′) is a separating pair of G, and so zc ∈ EN(G). Hence, conclusion (ii)

holds.

Subcase 1.2.2. ay ∈ E(G).

Then by Corollary 2.1.3 we know that ay ∈ ER(G). Then, we consider the

following cases.

(1.) d(a) ≥ 5 and d(y) ≥ 5. We claim that xz ∈ ER(G). Otherwise, xz ∈
EN(G), and we consider the corresponding separating group (xz, S ′; A′, B′)

such that x ∈ A′, z ∈ B′. Since azxa is a 3-cycle of G, we have a ∈ S ′. Since

ax ∈ EN(G), by Theorem 2.1.2 we know that |A′| = 2, say A′ = {x, v1}. Then

axv1a is a 3-cycle of G. Noticing that d(v1) = 4 and d(y) ≥ 5, we have that

v1 6= y, which is impossible. Hence, xz ∈ ER(G). By symmetry, bx ∈ ER(G).

We claim that az ∈ ER(G). Otherwise, az ∈ EN(G), and we consider the

corresponding separating group (az, S ′; A′, B′). Obviously, x ∈ S ′, and anal-

ogous arguments yield to a contradiction. So, az ∈ ER(G). By symmetry,

by ∈ ER(G). Hence, conclusion (iii) holds.

(2.) d(a) = 4 and d(y) ≥ 5. We let ΓG(a) = {x, y, z, v}. Let A′ =

{a, x}, S ′ = {v, z, y}, B′ = G− bx− S ′ −A′. Then (bx, S ′; A′, B′) is a separat-

ing group of G, and so bx ∈ EN(G). We claim that bz ∈ ER(G). Otherwise,

bz ∈ EN(G). We consider the corresponding separating group (bz, S ′; A′, B′)

such that b ∈ A′, z ∈ B′. Noticing that bzxb is a 3-cycle of G, we have x ∈ S ′.

Since bx ∈ EN(G), from Theorem 2.1.2 we have that |A′| = 2, say A′ = {b, v1}.
Then bxv1b is a 3-cycle of G. Noticing that d(y) ≥ 5 and d(v1) = 4, we have

that v1 6= y, which is impossible. Therefore, bz ∈ ER(G). We claim that

az ∈ ER(G). Otherwise, az ∈ EN(G). We consider the separating group

(az, S ′; A′, B′) such that a ∈ A′, z ∈ B′. Obviously, x ∈ S ′. Since ax ∈ EN(G),

from Theorem 2.1.2 we have that |A′| = 2, say A′ = {a, v1}. Then axv1a is a

3-cycle of G and v1 6= z. Note that d(v1) = 4, d(y) ≥ 5, and so v1 6= y, which

is impossible. So az ∈ ER(G). By analogous arguments we can show that
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zx ∈ ER(G). We claim that by ∈ ER(G). Otherwise, by ∈ EN(G). We con-

sider the separating group (by, S ′; A′, B′) such that b ∈ A′, y ∈ B′. Obviously,

x ∈ S ′. Since xy ∈ EN(G), from Theorem 2.1.2 we have that |B′| = 2, say

B′ = {y, v1}. Then xyv1x is a 3-cycle of G. It is easy to see that this is true

only if v1 = a. From ΓG(a) = {x, y, z, v} we know that S ′ = {x, z, v}. Since

d(y) ≥ 5, we have yz ∈ E(G), which is impossible. So by ∈ ER(G). Hence,

conclusion (iii) holds.

(3.) d(a) ≥ 5 and d(y) = 4. By analogous arguments as used in (2.) we can

show that the conclusion (iii) holds.

(4.) d(a) = d(y) = 4. We let ΓG(a) = {x, y, z, v}, A1 = {a, x}, S1 =

{z, y, v}, B1 = G − bx − S1 − A1. Then (bx, S1; A1, B1) is a separating group

of G, and so bx ∈ EN(G). By symmetry, ax, xy, zx ∈ EN(G). From Corollary

2.1.3 we have that az, by, bz ∈ ER(G). Hence, the conclusion (iii) holds.

If bx ∈ EN(G), we can apply similar arguments to show that conclusion

(vi) or (vii) hold. So, next we may assume that ax, bx ∈ ER(G).

Case 2. xz ∈ EN(G).

We consider the corresponding separating group (xz, T ; C, D) such that

x ∈ C, z ∈ D. Then x ∈ A ∩ C, z ∈ A ∩D. Since xzax, xzbx are two 3-cycles

of G, we have that a, b ∈ S ∩ T . Since A ∩ D = {z} and D is a connected

subgraph of G with |D| ≥ 2, we get that S ∩D 6= Ø. Since S = {a, b, c}, we

have that S∩D = {c}. Obviously, |B∩T | = 1. We distinguish three subcases.

Subcase 2.1. az ∈ EN(G).

By Theorem 2.1.2 we have that |D| = 2, and so D = {z, c}. It is easy to

see that ac, bc ∈ E(G). From Theorem 2.1.4 we have that ac, bc ∈ ER(G). Ob-

viously, d(x) = d(c) = d(z) = 4 and ΓG(x) = {z, b, a, y}. Let A1 = {x, z}, S1 =

{y, a, b}, B1 = G − zc − S1 − A1 Then (zc, S1; A1, B1) is a separating group

of G, and so zc ∈ EN(G). We take the separating group (az, S ′; A′, B′) such
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that a ∈ A′, z ∈ B′. Obviously, x ∈ S ′. Since xz ∈ EN(G), we have that

|B′| = 2, say B′ = {z, v1}. Then xzv1x is a 3-cycle of G, which is true

only if v1 = b, and so d(b) = 4. Now if d(a) = 4, let ΓG(a) = {x, z, c, v},
A1 = {a, z}, S1 = {c, x, v} and B1 = G − bz − S1 − B1. Then (bz, S1; A1, B1)

is a separating group of G, and so bz ∈ EN(G). If d(a) ≥ 5, we claim that

bz ∈ ER(G). Otherwise, bz ∈ EN(G). Then we consider the corresponding

separating group (bz, S1; A1, B1) such that b ∈ A1, z ∈ B1. Obviously, x ∈ S1.

Since xz ∈ EN(G), from Theorem 2.1.2 we have |B1| = 2, say B1 = {z, v1}.
Then xv1zx is a 3-cycle of G. Note that d(a) ≥ 5, d(v1) = 4, and so v1 6= a,

which is impossible. So, bz ∈ ER(G). Hence, conclusion (iv) holds.

Subcase 2.2. bz ∈ EN(G).

We can apply similar arguments as used in Subcase 2.1 to show that con-

clusion (iv) holds.

Subcase 2.3 az, bz ∈ ER(G).

Obviously, d(x) = d(z) = 4, and so conclusion (v) holds. This completes

the proof.¤

From Lemma 3.1.1 and its proof, we deduce the following corollary.

Corollary 3.1.1. Let G be a 4-connected graph and (xy, S; A,B) be a sep-

arating group of G such that x ∈ A, y ∈ B, S = {a, b, c}. Let A be a 1-edge-

vertex-cut atom, say A = {x, z}. If {xa, xb, xz} ∩ EN(G) 6= Ø, then x is an

inner vertex of one of the following subgraphs in G: helm, l-co-belt, l-belt, W ′-

framework, W -framework or l-bi-fan.

The following lemma will be used in the proof of Theorem 3.2.1.

Lemma 3.1.2. Let G be a 4-connected graph, (xy, S; A,B) be a separat-

ing group of G, and A be a 2-edge-vertex-cut atom, say A = {x, z} and

S = {a, b, c}. Then ax, bx, cx, xz ∈ ER(G).
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Proof. By contradiction. Assuming at least one of the edges ax, bx, cx, xz

belong to EN(G). We consider the following cases.

Case 1. ax ∈ EN(G).

We consider the corresponding separating group (ax, T ; C, D) such that

x ∈ C, a ∈ D. Then x ∈ A∩C, a ∈ S∩D. Let X = (D∩S)∪(S∩T )∪(B∩T ).

Since bx, cx ∈ E(G), we get that b, c ∈ S∩(C∪T ), and so |S∩D| = 1. We claim

that A ∩ T 6= Ø. Otherwise, A ∩ T = Ø. Since |A| = 2 and A is a connected

subgraph of G, we have that A∩C = {x, z}. It is easy to see that {b, c, x} is a

3-vertex-cut of G, a contradiction. Therefore, A∩ T = {z}, A∩D = Ø. Obvi-

ously, |X| ≥ 3. Since |S ∩D| = 1 and |D| ≥ 2, we have that B ∩D 6= Ø, and

so |X| ≥ 4. However, by noticing that |A ∩ T | = 1, we find |(S ∪B) ∩ T | = 2,

and then |X| = 3, a contradiction.

If bx ∈ EN(G) or cx ∈ EN(G), we can apply similar arguments. So, next

we may assume that bx, cx ∈ ER(G).

Case 2. xz ∈ EN(G).

We consider the corresponding separating group (xz, T ; C,

D) such that x ∈ C, z ∈ D. Then we have x ∈ A ∩ C, z ∈ A ∩ D. It is

easy to see that a, b, c ∈ S ∩ T . Since |T | = 3, we have that y ∈ B ∩ C.

Let X = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ), and so |X| = 3. Then it follows

B ∩D = Ø. Noticing that D ∩ S = Ø, we have that D = A∩D = {z}, which

contradicts that |D| ≥ 2. Therefore, xz ∈ ER(G). This completes the proof. ¤

3.2 Removable Edges in a Cycle

Before we present and prove the main results of this chapter, we introduce

the following definition.

Definition 3.2.1. Let C be a cycle of a 4-connected graph G and H a sub-
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graph of G belonging to <. If C contains an inner vertex of H, then we say

that C passes through H.

Now we present our main results.

Theorem 3.2.1. Let G be a 4-connected graph and C a cycle of G. If C does

not pass through any subgraph of G belonging to <, then there are at least two

removable edges of G in C.

Proof. By contradiction. Assume that C does not pass through any sub-

graph of G belonging to <, and there is at most one removable edge of G

in C. Let F = E(C) ∩ ER(G), so |F | ≤ 1. Denote E(C) − F by E0.

We consider the separating group (uw, S ′; A′, B′) such that u ∈ A′, w ∈ B′

and uw ∈ E0. Since |F | ≤ 1 we know that (E(A′) ∪ [A′, S ′]) ∩ F = Ø

or (E(B′) ∪ [S ′, B′]) ∩ F = Ø. Without loss of generality, we may assume

that (E(A′) ∪ [A′, S ′]) ∩ F = Ø. Since A′ is an E0-edge-vertex-cut fragment,

A′ must contain an E0-edge-vertex-cut end-fragment as its subgraph, say A.

Then we have that (E(A)∪ [A, S])∩F = Ø, and we consider separating group

(xy, S; A,B) such that x ∈ A, y ∈ B with xy ∈ E0. We distinguish two main

cases and a number of subcases.

Case 1. |A| = 2.

Then A is a 1-edge-vertex-cut atom or a 2-edge-vertex-cut atom, say A =

{x, z}. Let S = {a, b, c}.

Subcase 1.1. A is a 2-edge-vertex-cut atom.

Since xy ∈ E(C) and C is a cycle of G, we have that {xa, xb, xc, xz} ∩
E(C) 6= Ø. From Lemma 3.1.2 we know that {xa, xb, xc, xz} ⊂ ER(G), which

contradicts that (E(A) ∪ [A, S]) ∩ F = Ø.

Subcase 1.2. A is a 1-edge-vertex-cut atom.

By noticing that C is a cycle of G and ([E(A)∪ [A, S])∩F = Ø, obviously
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{xa, xb, xz} ∩ EN(G) 6= Ø. From Corollary 3.1.1 we know that x is an inner

vertex of one of the subgraphs of G belonging to <. Since xy ∈ E(C), this

contradicts the assumption that C does not pass through any subgraph of G

belonging to <.

Case 2. |A| ≥ 3.

We will distinguish the following subcases.

Subcase 2.1. There exists an xz ∈ E0 ∩ E(A ∪ [A, S]).

Then obviously z 6∈ S; otherwise, we would have |A| = 2, a contradic-

tion to |A| ≥ 3. We take the separating group (xz, S1; A1, B1) such that

x ∈ A1, z ∈ B1. Then we have that x ∈ A ∩ A1, z ∈ A ∩B1. Let

X1 = (A1 ∩ S) ∪ (S ∩ S1) ∪ (A ∩ S1)

X2 = (A ∩ S1) ∪ (S ∩ S1) ∪ (B1 ∩ S)

X3 = (B1 ∩ S) ∪ (S ∩ S1) ∪ (B ∩ S1)

X4 = (B ∩ S1) ∪ (S ∩ S1) ∪ (A1 ∩ S)

If y ∈ B∩S1, from Theorem 2.1.2 we know that |A1| = 2, say A1 = {x, v1}. We

claim that A1 is a 1-edge-vertex-cut atom; otherwise, A1 is a 2-edge-vertex-

cut atom, and then, by Lemma 3.1.2 we get xy ∈ ER(G), a contradiction.

From Corollary 3.1.1 we know that x is an inner vertex of some subgraph of

G belonging to <, a contradiction to the assumption. Therefore, y /∈ B ∩ S1,

and so y ∈ A1 ∩ B. Since A ∩ B1 6= Ø, we have that X2 is a vertex-cut

of G − xz, and so |X2| ≥ 3. By analogous arguments, we can deduce that

|X4| ≥ 3. Since |X2| + |X4| = |S| + |S1| = 6, we get that |X2| = |X4| = 3,

and so |A1 ∩ S| = |A ∩ S1|, |B ∩ S1| = |B1 ∩ S|. We claim that A ∩B1 = {z}.
Otherwise, |A ∩B1| ≥ 2. Then (xz, X2; A ∩B1, A1 ∪B) is a separating group
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of G and xz ∈ E0. It is easy to see that A ∩ B1 is an E0-edge-vertex-cut

fragment contained in A, which contradicts that A is an E0-edge-vertex-cut

end-fragment of G. Therefore, A ∩ B1 = {z}. Since |B1| ≥ 2 and B1 is a

connected subgraph of G, we obtain B1 ∩ S 6= Ø.

Subcase 2.1.1. |B1 ∩ S| = |B ∩ S1| = 3.

Then |X1| = 0, and so {z, y} would be 2-vertex-cut of G, a contradiction.

Subcase 2.1.2. |B1 ∩ S| = |B ∩ S1| = 2.

Since X1 is a vertex-cut of G−xy−xz, |X1| ≥ 2. Noticing that |S| = |S1| =
3, we have that |A∩S1| = |A1∩S| = 1, S∩S1 = Ø. We claim that A∩A1 = {x}.
Otherwise, |A∩A1| ≥ 2. Then {x}∪X1 is a 3-vertex-cut of G, a contradiction.

Let A∩S1 = {a}, A1∩S = {b}, S∩B1 = {v1, v2}. From A∩B1 = {z} we deduce

that ΓG(z) = {x, a, v1, v2}. We claim that ab ∈ E(G). Otherwise, {x, v1, v2}
is a 3-vertex-cut of G, a contradiction. We claim that av1, av2 ∈ E(G). Oth-

erwise, without loss of generality, we may assume that av1 6∈ E(G). Let

A′ = {x, a}, S ′ = {b, z, v2}, B′ = G − xy − S ′ − A′. Then (xy, S ′; A′, B′)

is a separating group of G. Since xy ∈ E0, A′ is an E0-edge-vertex-cut

fragment contained in A, which contradicts that A is an E0-edge-vertex-cut

end-fragment. So, av1, av2 ∈ E(G), and hence ΓG(a) = {x, z, b, v1, v2}. Let

S0 = {x, v1, v2}, A0 = {a, z}, B0 = G − ab − S0 − A0. Then (ab, S0; A0, B0)

is a separating group of G, and so ab ∈ EN(G). We claim that az ∈ ER(G).

Otherwise, az ∈ EN(G), and we consider the corresponding separating group

(az, S ′; A′, B′) such that a ∈ A′, z ∈ B′. Since axza, av1za, av2za are 3-cycles

of G, we have that x, v1, v2 ∈ S ′. Since xz ∈ EN(G), from Theorem 2.1.2 it

follows that |B′| = 2, say B′ = {z, u}. Then, uzxu is a 3-cycle of G, which is

impossible. Hence az ∈ ER(G).

Since (E(A)∪[A, S])∩F = Ø and C is a cycle of G, we get that {zv1, zv2}∩
EN(G) 6= Ø. Without loss of generality, we may assume that zv1 ∈ EN(G).

We take the separating group (zv1, T ; C ′, D′) such that z ∈ C ′, v1 ∈ D′. Then

z ∈ C ′ ∩B1, v1 ∈ B1 ∩D′. Obviously, a ∈ S1 ∩ T . Let
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Y1 = (A1 ∩ T ) ∪ (S1 ∩ T ) ∪ (C ′ ∩ S1)

Y2 = (C ′ ∩ S1) ∪ (S1 ∩ T ) ∪ (B1 ∩ T )

Y3 = (B1 ∩ T ) ∪ (S1 ∩ T ) ∪ (S1 ∩D′)

Y4 = (D′ ∩ S1) ∪ (S1 ∩ T ) ∪ (A1 ∩ T )

We distinguish the following cases to prove the Subcase 2.1.2.

(1.) x ∈ A1 ∩ C ′. Then Y1 is a vertex-cut of G − xz, and so |Y1| ≥ 3. By

similar arguments, we have that |Y3| ≥ 3. Since |Y1|+ |Y3| = |S1|+ |T | = 6, we

conclude that |Y1| = |Y3| = 3 and |A1∩T | = |S1∩D′|, |S1∩C ′| = |B1∩T |. Since

a ∈ S1, from Theorem 2.1.4 we know b 6∈ T ∪ S1. Since bx, zv2 ∈ E(G), we

have that b ∈ A1∩C ′ and v2 6∈ D′∩B1. From ΓG(a) = {v1, v2, z, x, b}, we know

that ΓG(a) ∩ (B1 ∩D′) = {v1}. Then we have that |A1 ∩ T | = |S1 ∩D′| = 0, 1

or 2. Next we distinguish the following cases according to the value |A1 ∩ T |
and |S1 ∩D′|.

(1.1.) |A1 ∩ T | = |D′ ∩ S1| = 2. Then |S1 ∩ C ′| = |B1 ∩ T | = 0. Since

zv2 ∈ E(G), we have v2 ∈ B1 ∩ C ′, and hence {a, z} is a 2-vertex-cut of G, a

contradiction.

(1.2.) |A1 ∩ T | = |D′ ∩ S1| = 1. Then |S1 ∩ T | ≤ 2. First, we claim that

B1∩D′ = {v1}. Otherwise, |B1∩D′| ≥ 2. Then from ΓG(a)∩(B1∩D′) = {v1},
we can conclude that {v1} ∪ (Y3 − {a}) is a 3-vertex-cut of G, a contradic-

tion. So, B1 ∩ D′ = {v1}. Let D′ ∩ S1 = {u1}. If A1 ∩ D′ 6= Ø, from

ΓG(a) = {x, z, b, v1, v2} we get that A1 ∩ D′ ∩ ΓG(a) = Ø, and so Y4 − {a}
is a vertex-cut of G with cardinality less than 4, a contradiction. There-

fore, A1 ∩ D′ = Ø. Then au1 ∈ E(G). However, it is easy to see that

u1 6∈ {x, z, b, v1, v2}, a contradiction.

(1.3.) |D′∩S1| = |A1∩T | = 0. Since D′ is a connected subgraph of G, we have
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that A1∩D′ = Ø. Then |D′| = |D′∩B1| ≥ 2. Since ΓG(a)∩ (B1∩D′) = {v1},
by noticing that |Y3| = 3, we have that {v1} ∪ (Y3 − {a}) is a 3-vertex-cut of

G, a contradiction.

(2.) x ∈ A1 ∩ T . From Theorem 2.1.2 we have that |C ′| = 2. Since C ′ is a

connected subgraph of G, we have that A1 ∩ C ′ = Ø. If S1 ∩ C ′ 6= Ø, since

a ∈ S1 ∩ T , we have |D′ ∩S1| ≤ 1. Noticing that Y3 is a vertex-cut of G− zv1,

we have that |Y3| ≥ 3, and so |B1 ∩ T | = 1, A1 ∩ T = {x}. Obviously, |Y4| = 3,

and hence A1 ∩ D′ = Ø, and so A1 = {x}, which contradicts |A1| ≥ 2. So

S1 ∩C ′ = Ø, and |B1 ∩C ′| = 2. Since A1 ∩ T 6= Ø, obviously, {z} ∪ (T −{x})
is a vertex-cut with cardinality less than 4, a contradiction. This completes

the proof of Subcase 2.1.2.

Subcase 2.1.3. |B1 ∩ S| = |B ∩ S1| = 1.

Then |S∩S1| ≤ 2. We claim that |S∩S1| < 2. Otherwise, |S∩S ′| = 2, im-

plying A∩S1 = Ø = S∩A1. If |A∩A′| ≥ 2, then {x}∪ (S∩S1) is a vertex-cut

of G with cardinality less than 4, a contradiction. So A∩A1 = {x}. Note that

|X2| = 3. If |A ∩ B1| ≥ 2, then by arguments similar to that used in Subcase

2.1, A ∩ B1 is an E0-edge-vertex-cut fragment contained in A, which contra-

dicts that A is an E0-edge-vertex-cut end-fragment. Hence, A∩B1 = {z}, and

so |A| = 2, which contradicts |A| ≥ 3. Therefore, |S ∩ S1| ≤ 1, and we have

|X3| ≤ 3. Since G is 4-connected, we have B∩B1 = Ø. Since A∩B1 = {z}, we

have that |B1| = 2 and B1 is a 1-edge-vertex-cut atom of G, say B1 = {z, u}.
Since C is a cycle and (E(A)∪ [A, S]) 6= Ø, we have that z is incident with at

least two unremovable edges. From Corollary 3.1.1 we know that z is an inner

vertex of some subgraph of G belong to <, which contradicts the assumption

that C does not pass through any subgraph of G belonging to <. This com-

pletes the proof of Theorem 3.2.1.¤

The following is our another main result of this chapter.

Theorem 3.2.2. Let G be a 4-connected graph and C a cycle of G. If C

passes through precisely one subgraph of G belonging to <, then there exists at
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least one removable edge of G in C.

Proof. By contradiction. Assume that E(C) ⊂ EN(G). Let C pass through a

subgraph H of G that belongs to<, (see Definitions 1.2.1 through 1.2.6). If H is

a maximal l-belt, from the assumption it is easy to see that {x2x1, yl+1yl+2} ∩
E(C) 6= Ø. If x2x1 ∈ E(C), by letting S = {yl+2, xl+2, y1}, e = x2x1, B =

{x2, · · · , xl+1, y2, · · · , yl+1}, A = G − e − S − B, (e, S; A,B) is a separating

group of G such that A does not contain any inner vertex of H; if ylyl+1 ∈
E(C), by letting S = {x1, y1, xl+2}, e = yl+1yl+2, B = {x2, · · · , xl+1, y2, · · · ,-
yl+1}, A = G − e − S − B, (e, S; A,B) is a separating group of G such that

A does not contain any inner vertex of H. If H is a maximal l-co-belt, simi-

larly, we have that {x1x2, y1y2} ∩ E(C) 6= Ø. If x1x2 ∈ E(C), by letting S =

{yl+2, xl+3, y1}, e = x2x1, B = {x2, · · · , xl+2, y2, · · · , yl+1}, A = G − e − S − B,

(e, S; A,B) is a separating group of G such that A does not contain any in-

ner vertex of H; if y1y2 ∈ E(C), by letting S = {yl+2, xl+3, x2}, e = y2y1, B =

{x3, · · · , xl+2, y2, · · · , yl+1}, A = G−e−S−B, (e, S; A,B) is a separating group

of G such that A does not contain any inner vertex of H. If H is a maximal

l-bi-fan (l ≥ 1), by letting S = {a, b, xl+3}, e = x2x1, B = {x2, · · · , xl+2}, A =

G − e − S − B, (e, S; A,B) is a separating group of G such that A does not

contain any inner vertex of H. If H is a helm, by letting e = x1v1, S =

{v2, v3, v4}, B = {a, x1, x2, x3, x4}, A = G − e − S − B, then (e, S; A,B) is a

separating group of G such that A does not contain any inner vertex of H. If

H is a W -framework, then C must pass through x1x2, x2x3. In this case, by

letting e = x2x1, S = {x3, y4, y2}, B = {x2, y3}, A = G− e−S−B, (e, S; A,B)

is a separating group of G such that A does not contain any inner vertex of

H. If H is a W ′-framework, by noticing that {x1x2, x2y2}∩E(C) 6= Ø, then if

x1x2 ∈ E(C), by letting S = {y2, x3, y4}, B = {x2, y3}, A = G− x1x2− S −B,

(x1x2, S; A,B) is a separating group of G such that A does not contain any

inner vertex of H; if x2y2 ∈ E(C), by letting S = {x1, y3, v} such that

v ∈ ΓG(x3), B = {x2, x3}, A = G − x2y2 − S − B, (x2y2, S; A,B) is a sep-

arating group of G such that A does not contain any inner vertex of H.

Let E0 = E(C). Then A is an E0-edge-vertex-cut fragment of G such that
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it does not contain any inner vertex of H. Obviously, A contains an E0-edge-

vertex-cut end-fragment as its subgraph, say A′. It is easy to see that A′ does

not contain any inner vertex of H. To complete the proof of Theorem 3.2.2,

by an argument analogous to that used in the proof of Theorem 3.2.1, we can

show that A′ contains an inner vertex of some subgraph of G belonging to <. ¤

Finally, we construct examples, see figure 3.1, 3.2, 3.3, to show that the

lower bounds in Theorems 3.2.1 and 3.2.2 are in some sense best possible. We

also give an example to show that the conditions in Theorems 3.2.1 and 3.2.2

are not improved.

Let F be a maximal k-bi-fan such that V (F ) = {a, b, z1, z2, · · · , zk+3} and

E(F ) = {z1z2, z2z3, · · · , zk+2zk+3, az2, az3, · · · , azk+2, bz2, · · · , bzk+2} where k ≥
1. Let L be a maximal l-belt such that V (L) = {x1, x2, · · · , xl+2, y1, y2, · · · , yl+2}
and E(H) = E1(H)∪E2(H) where E1(H) = {x1x2, x2x3, · · · , xl+1xl+2, y1y2, y2y3,

· · · , yl+1yl+2} and E2(H) = {y1x2, x2y2, y2x3, · · · , ylxl+1, xl+1yl+1, yl+1xl+2}, in

which l ≥ 1.

Example 3.2.1 Identify vertex a with x1, vertex b with yl+2, vertex zk+3 with

xl+2, and vertex z1 with y1, respectively. Denote the resulting graph by G1. Let

G = G1 +ab+y1xl+2. It is easy to see that G is a 4-connected graph. First, let

A = {x3, x4, · · · , xl+1, y2, y3, · · · , yl+1}, S = {x2, xl+2, y1}, B = G−byl+1−S−A.

Then (byl+1, S; A,B) is a separating group of G, and so byl+1 ∈ EN(G). Since

y1xl+2 ∈ E([S]), from Theorem 2.1.4 we have that y1xl+2 ∈ ER(G). Obviously,

(xl+2zk+2, S1) is a separating pair such that S1 = {a, b, z2}, and (z2y1, S2) is a

separating pair such that S2 = {a, b, xl+2}. It is easy to see that zizi+1 ∈ EN(G)

where i = 2, · · · , k+1. Consider the cycle C1 = y1xl+2zk+2zk+1zk · · · z2y1. Then

C1 only passes through one subgraph of G belonging to <, and C1 has only

one removable edge y1xl+2 of G. This shows that the result of Theorem 3.2.2

is in some sense best possible. See figure 3.1.

Example 3.2.2 First, delete the vertices z1, zk+3 from F . Then, identify ver-

tex z2 with x1, vertex zk+2 with yl+2, respectively. Denote the resulting graph
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                           a                                                     b 
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                        z3 
                                                                  zk+1 

                                                          zk+2 

                        x2                               x3                                                      xl+1                                                           xl+2 

                                y1                                      y2                                                       yl+1 
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Unremovable edge 

                                                    yl 

Figure 3.1:

by G2. Let G = G2 + ab + ay1 + bxl+2 + y1xl+2. It is easy to see that G is a 4-

connected graph. Let A = {x3, · · · , xl+1, y2, · · · , yl+1}, S = {y1, xl+2, x2}, B =

G − zk+2yl+1 − S − A. Then (zk+2yl+1, S; A,B) is a separating group of G,

and so zk+2yl+1 ∈ EN(G). Since y1xl+2 ∈ E([S]), from Theorem 2.1.4 we have

that y1xl+2 ∈ ER(G). Obviously, (z2x2, S1) is a separating group of G such

that S1 = {a, b, zk+2}, and so z2x2 ∈ EN(G). By a similar argument, we get

that ay1, bxl+2 ∈ EN(G). Since ab ∈ E([S1]), we have ab ∈ ER(G). Consider

the cycle C2 = abxl+2y1a. Then C2 does not pass through any subgraph of

G belonging to <, and C2 has exactly two removable edges ab, y1xl+2 of G.

This shows that the result of Theorem 3.2.1 is in some sense best possible. See

figure 3.2.

The following example shows that if a cycle C of 4-connected G passes

through two subgraphs of G belonging to <, then it may not contain any re-

movable edge of G.

Example 3.2.3 First, delete the vertex zk+3 from F . Then identify vertex

a with x1, vertex zk+2 with yl+2, vertex z1 with y1, respectively. Join vertice

b and xl+2. Denote the resulting graph by G3. Let G = G3 + ab + y1xl+2.

It is easy to see that G is a 4-connected graph. Consider the cycle C3 =
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                           a                                                      b 
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                        z3 
                                                                  zk+1 
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Figure 3.2:

y1y2 · · · zl+2zl+1 · · · z2y1. Then C3 passes through two subgraphs of G belong-

ing to <. It is easy to see that E(C3) ⊂ EN(G), and so C3 does not contain

any removable edge of G. This in some sense shows that the conditions of

Theorems 3.2.1 and 3.2.2 are best possible. See figure 3.3.
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                                      y2                                                       yl+1 
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Figure 3.3:



Chapter 4

Removable Edges in a Longest
Cycle of a 4-Connected Graph

In this chapter we obtain results on removable edges in a longest cycle of a 4-

connected graph G. We also show that for a 4-connected graph G of minimum

degree at least 5 or girth at least 4, any edge of G is removable or contractible.

4.1 Some Preliminary Results

Before giving our main results, we first show the following results.

Theorem 4.1.1. Let G be a 4-connected graph with |G| ≥ 8 such that

δ(G) ≥ 5 or g(G) ≥ 4. Then any edge of G is removable or contractible.

Proof. By contradiction. Suppose there exists an edge e of G such that

e ∈ EN(G) and e /∈ EC(G). Then we will deduce contradictions as follows.

Let e = xy. Since e /∈ EC(G), there exists a 4-vertex-cut T of G such that

e ∈ [T ]. Let G − T = C ∪ D such that C is the union of at least one but

not of all the components of G − T and D = G − T − C. Since e ∈ EN(G),

by Theorem 2.1.2 there exists a separating group (e, S; A,B) of G such that

x ∈ A, y ∈ B. It is easy to see that x ∈ A ∩ T, y ∈ B ∩ T . Let

X1 = (C ∩ S) ∪ (T ∩ S) ∪ (A ∩ T ),

46
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X2 = (A ∩ T ) ∪ (T ∩ S) ∪ (S ∩D),

X3 = (D ∩ S) ∪ (T ∩ S) ∪ (B ∩ T ),

X4 = (T ∩B) ∪ (T ∩ S) ∪ (S ∩ C).

From |G| ≥ 8 we know that there exists a vertex v ∈ V (G) satisfying v /∈ S∪T .

Symmetrically, we may assume v ∈ A ∩ C. Since A ∩ C 6= Ø and G is 4-

connected, we have that X1 is a vertex-cut of G, and so |X1| ≥ 4. Since

|X1|+ |X3| = |S|+ |T | = 7, we have that |X3| ≤ 3. Since G is 4-connected, we

have that B∩D = Ø. We distinguish the following cases to prove the theorem.

Case 1. B ∩ C 6= Ø.

Then X4 is a vertex-cut of G, and so |X4| ≥ 4. From |X2| + |X4| =

|S|+|T | = 7, we get that |X2| ≤ 3. Since G is 4-connected, we have A∩D = Ø.

Thus, D = D ∩ S, and so D ∩ S 6= Ø. Noticing that |S| = 3, we have

|S ∩ (C ∪T )| ≤ 2. Hence, |X1| ≥ 4 and |X4| ≥ 4. So, we have that |A∩T | ≥ 2

and |B∩T | ≥ 2 hold. Noticing that |T | = 4, we have that |A∩T | = |B∩T | = 2

and |S ∩ T | = 0. Thus, |S ∩ C| = 2, and so |S ∩ D| = 1, i.e., |D| = 1. Let

D = {u}. Then xyux is a triangle of G, d(u) = 4 and g(G) = 3, a contradic-

tion.

Case 2. B ∩ C = Ø.

We have B = B ∩ T . From |X1| ≥ 4, we get that |S ∩C| ≥ |B ∩ T |. Since

|B| ≥ 2, we have that |B ∩ T | ≥ 2. If |B ∩ T | ≥ 3, noticing that |T | = 4, then

we have that S ∩ T = Ø and A ∩ T = {x}. Based on the above arguments,

we have |S ∩ C| ≥ 3. Noticing that |S| = 3, we have that S ∩ D = Ø and
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|X2| = 1, and so A ∩D = Ø. Consequently, D = Ø, a contradiction. There-

fore, |B ∩ T | = 2. Noticing that |S| = 3, we have |S ∩ (T ∪ D)| ≤ 1. From

|B ∩ T | = 2, we get that |A∩ T | ≤ 2, and so |X2| ≤ 3. Therefore, A∩D = Ø.

Then D = D ∩ S, and so D ∩ S 6= Ø. Noticing that |S ∩ C| ≥ 2 and |S| = 3,

we have |D∩S| = 1. Let D∩S = {u}. Then xyux is a triangle of G, d(u) = 4

and g(G) = 3, a contradiction. This completes the proof. ¤

From the proof of Theorem 4.1.1 we get the following result.

Corollary 4.1.1. Let G be a 4-connected graph with |G| ≥ 8. If there exists

an edge e ∈ E(G) such that e ∈ EN(G) and e /∈ EC(G), then δ(G) = 4 and e

is on a triangle of G. ¤

Before we prove our main result, we prove the following lemma.

Lemma 4.1.1. Let G be a 4-connected graph with |G| ≥ 8 and C be a longest

cycle of G. Let E(C) ⊂ EN(G) and E0 = E(C). Suppose x1x2 ∈ E(C) and

(x1x2, S; A,B) is a separating group such that x2 ∈ A, x1 ∈ B and A is an E0-

edge-vertex-cut end-fragment. Then there are vertices x, z, u, v ∈ V (C) such

that xz ∈ E(G)(maybe xz /∈ E(C)), d(x) = d(z) = 4, ΓG(x) ∩ ΓG(z) = {u, v}
and {x, z} ∩ A 6= Ø and {x, z} ∩B = Ø.

Proof. Since E(C) = E0, the edge-vertex-cut fragment corresponding to any

edge e on C is an E0-edge-vertex-cut fragment. Take any edge x1x2 on C. Since

x1x2 ∈ EN(G), by Theorem 2.1.1 there is a separating group (x1x2, S; A,B)

such that x2 ∈ A and x1 ∈ B. It is easy to see that every E0-edge-vertex-cut

fragment contains such an end-fragment as a subset. Without loss of gen-

erality, from the arbitrariness of e on C we can assume that A is such an

end-fragment. Since C is a cycle, we have that (E(A) ∪ [A, S]) ∩ E(C) 6= Ø.

Take an edge x2x3 in the intersection. Since x2x3 ∈ E(C) ⊂ EN(G), we can

consider a separating group (x2x3, S
′; A′, B′) such that x2 ∈ A′ and x3 ∈ B′.

Note that x2 ∈ A ∩ A′. Let

X1 = (A′ ∩ S) ∪ (S ′ ∩ S) ∪ (A ∩ S ′),
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X2 = (A ∩ S ′) ∪ (S ′ ∩ S) ∪ (S ∩B′),

X3 = (B′ ∩ S) ∪ (S ′ ∩ S) ∪ (B ∩ S ′),

X4 = (S ′ ∩B) ∪ (S ′ ∩ S) ∪ (S ∩ A′).

We distinguish the following cases to complete the proof.

Case 1. x3 ∈ A ∩B′ and x1 ∈ A′ ∩B.

Since A′ ∩B 6= Ø, we know that X4 is a vertex-cut of the graph G− x1x2.

Since G is 4-connected and so G−x1x2 is 3-connected, we have that |X4| ≥ 3.

Similarly, X2 is a vertex-cut of G− x2x3 and so |X2| ≥ 3. Since |X2|+ |X4| =
|S|+ |S ′| = 6, we get that |X2| = |X4| = 3, and hence |A′ ∩ S| = |A ∩ S ′| and

|B ∩ S ′| = |B′ ∩ S|. Since |S| = |S ′| = 3, we can distinguish the following four

subcases for the value |B ∩ S ′| = |B′ ∩ S|.

Subcase 1.1. |B ∩ S ′| = |B′ ∩ S| = 3.

Note that |S| = |S ′| = 3. This implies that |X1| = 0. Hence, {x1, x3} is a

2-vertex-cut of G, which contradicts that G is 4-connected.

Subcase 1.2. |B ∩ S ′| = |B′ ∩ S| = 2.

We claim that S ∩ S ′ = Ø. If not, since |S| = |S ′| = 3, we get that

|S ∩ S ′| = 1. Then A′ ∩ S = A ∩ S ′ = Ø, and hence |X1| = 1. Then

X1 ∪ {x1, x3} is a 3-vertex-cut of G, which contradicts that G is 4-connected.

Therefore, S∩S ′ = Ø, and so |A′∩S| = |A∩S ′| = 1. This implies that |X1| = 2.

We claim that A∩A′ = {x2}. Otherwise, |A∩A′| ≥ 2. Then since |X1| = 2, it
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is easy to see that {x2}∪X1 is a 3-vertex-cut of G, a contradiction. Therefore,

A∩A′ = {x2}. Next, we claim that A∩B′ = {x3}. Otherwise, |A∩B′| ≥ 2. Let

A1 = A∩B′, S1 = X2 and B1 = G−x2x3−S1−A1. Then (x2x3, S1; A1, B1) is a

separating group of G. Since x2x3 ∈ E0, A1 is an E0-edge-vertex-cut fragment

of G. Since A1 ⊂ A, this contradicts that A is an E0-edge-vertex end-fragment.

Therefore, A∩B′ = {x3}. Let A∩S ′ = {a}, A′∩S = {b} and B′∩S = {u, v}.
We claim ab ∈ E(G). If not, then {u, v, x2} would be a 3-vertex-cut of G,

which contradicts that G is 4-connected. Therefore, ab ∈ E(G). It is easy

to see that ΓG(x2) = {x1, x3, a, b} and ΓG(x3) = {a, u, v, x2}. First, we let

e1 = ab, S1 = {x2} ∪ (B ∩ S ′), A1 = A′ ∩ (B ∪ S) and B1 = G− e1 − S1 −A1.

Then (e1, S1; A1, B1) is a separating group of G, and so ab ∈ EN(G). Next, we

claim ax3 ∈ ER(G). If not, ax3 ∈ EN(G), and hence there is a corresponding

separating group (ax3, S1; A1, B1) such that a ∈ A1 and x3 ∈ B1. Since ax2x3a

is a triangle of G, we have that x2 ∈ S1. Since x2x3 ∈ EN(G), by Theorem

2.1.2 we have that |B1| = 2, say B1 = {v1, x3}. Then it is easy to see that

v1x2x3v1 is a triangle of G and v1 6= a, which is impossible in G. Therefore,

ax3 ∈ ER(G). Since C is a cycle, x3 ∈ V (C) and E(C) ⊂ EN(G), we have

that {x3u, x3v} ∩ EN(G) 6= Ø. Without loss of generality, we assume that

x3u ∈ EN(G).

We claim that au /∈ E(G). By contradiction, suppose au ∈ E(G). Since

x3u ∈ EN(G), there is a corresponding separating group (x3u, T1; C1, D1) such

that x3 ∈ C1 and u ∈ D1. So, x3 ∈ C1 ∩B′ and u ∈ B′ ∩D1. Since ax3ua is a

triangle of G, we have a ∈ T1, and so a ∈ S ′ ∩ T1. Let

Y1 = (A′ ∩ T1) ∪ (S ′ ∩ T1) ∪ (C1 ∩ S ′),

Y2 = (C1 ∩ S ′) ∪ (S ′ ∩ T1) ∪ (B′ ∩ T1),

Y3 = (B′ ∩ T1) ∪ (S ′ ∩ T1) ∪ (S ′ ∩D1),
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Y4 = (D1 ∩ S ′) ∪ (S ′ ∩ T1) ∪ (A′ ∩ T1).

We distinguish the following cases to prove the claim.

(1.) x2 ∈ A′∩C1. Then Y1 is a vertex-cut of G−x2x3. Since G is 4-connected,

we have |Y1| ≥ 3. Similarly, we have |Y3| ≥ 3. Since |Y1|+|Y3| = |S ′|+|T1| = 6,

we have |Y1| = |Y3| = 3. Then |A′∩T1| = |S ′∩D1| and |S ′∩C1| = |B′∩T1| hold.

Since a ∈ S ′ ∩T1 and ab ∈ EN(G), by Theorem 2.1.4 we have that b /∈ T1 ∪S ′.

Since bx2 ∈ E(G), we have b ∈ A′ ∩ C1. From x3v ∈ E(G) we know that

v /∈ D1 ∩B′, and so v ∈ B′ ∩ (C1 ∪ T1). Clearly, |A′ ∩ T1| = |S ′ ∩D1| ≤ 2. We

discuss the following cases for the value |A′ ∩ T1| = |S ′ ∩D1|.

(1.1.) |A′ ∩T1| = |S ′ ∩D1| = 2. Noticing that |T1| = |S ′| = 3 and a ∈ S ′ ∩T1

we have that |S ′ ∩ C1| = |B′ ∩ T1| = 0. Since avx3a is a triangle of G, we

have v ∈ B′ ∩ C1, and so |B′ ∩ C1| ≥ 2. Then {a, x3} is a 2-vertex-cut of G, a

contradiction.

(1.2.) |A′ ∩ T1| = |S ′ ∩ D1| = 1. Then |S ′ ∩ T1| ≤ 2. First, we claim that

B′∩D1 = {u}. If not, then |B′∩D1| ≥ 2. Since ΓG(a) = {x2, x3, u, v, b}, by the

foregoing arguments we have that ΓG(a)∩(B′∩D1) = {u}. So {u}∪(Y3−{a})
is a 3-vertex-cut of G, a contradiction. Therefore, B′ ∩ D1 = {u}. Let

D1 ∩ S ′ = {u1}. If |S ′ ∩ T1| = 1, i.e., S ′ ∩ T1 = {a}, then |Y4| = 3. Since

G is 4-connected, we have that D1 ∩ A′ = Ø. So, u1 ∈ ΓG(a). However, it is

easy to see that u1 /∈ {x2, x3, b, u, v}, a contradiction. Therefore, |S ′ ∩ T1| = 2

must hold. Then A′ ∩ D1 = Ø. If not, then Y4 − {a} is a 3-vertex-cut of

G, a contradiction. So, A′ ∩ D1 = Ø and it is easy to see that au1 ∈ E(G).

However, this would imply that u1 ∈ {b, u, v, x2, x3}, a contradiction.

(1.3.) |A′ ∩ T1| = |S ′ ∩D1| = 0. Since D1 is a connected subgraph of G, we

have that A′ ∩ D1 = Ø. From |D1| ≥ 2 we have that |D1 ∩ B′| ≥ 2. Since

|Y3| = |T1| = 3, by analogous arguments we have that ΓG(a)∩(D1∩B′) = {u}.
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So {u} ∪ (Y3 − {a}) is a 3-vertex-cut of G, a contradiction.

(2.) x2 ∈ A′ ∩ T1. Since x3x2 ∈ EN(G), by Theorem 2.1.2 we have that

|C1| = 2. Since C1 is a connected subgraph of G, we have that A′ ∩ C1 = Ø.

If S ′ ∩ C1 6= Ø, then due to |C1| = 2, we have that |S ′ ∩ C1| = 1. From

a ∈ S ′ ∩ T1 we have that |D1 ∩ S ′| ≤ 1. Since Y3 is a vertex-cut of G − x3u,

we have that |Y3| ≥ 3, and so |B′ ∩ T1| ≥ 1. Noticing that |T1| = 3, we

get that A′ ∩ T1 = {x2} and |Y4| = 3. Since G is 4-connected, we have that

A′∩D1 = Ø. Hence, A′ = {x2}, which contradicts that |A′| ≥ 2. If S ′∩C1 = Ø,

then |B′∩C1| = 2. Since A′∩T1 6= Ø, we have that |Y2| = |T1∩ (B′∪S ′)| ≤ 2,

and so {x3} ∪ Y2 is a vertex-cut of G with cardinality less than 4, a contradic-

tion.

So we have proved and claim that au /∈ E(G). Let A1 = {a, x2}, S1 =

{x3} ∪ (S − {u}) and B1 = G − x1x2 − S1 − A1. Then (x1x2, S1; A1, B1) is a

separating group of G and x1x2 ∈ E0. So, A1 is an E0-edge-vertex-cut fragment

and A1 ⊂ A, which contradicts that A is an E0-edge-vertex-cut end-fragment.

This complete the proof of Subcase 1.2.

Subcase 1.3. |B ∩ S ′| = |B′ ∩ S| = 1.

Then |S∩S ′| ≤ 2. We distinguish the following cases for the value |S∩S ′|.

Subcase 1.3.1. |S ∩ S ′| = 2.

Then |A′∩S| = |A∩S ′| = 0 and so |X1| = 2. We claim that A∩A′ = {x2}.
If not, then |A∩A′| ≥ 2, and so X1∪{x2} is a 3-vertex-cut of G, a contradiction.

Hence, A ∩ A′ = {x2}. Since |X2| = 3, we claim that A ∩ B′ = {x3}. Other-

wise, |A ∩ B′| ≥ 2. Let A1 = A ∩ B′, S1 = X2 and B1 = G− x2x3 − S1 − A1.

Then (x2x3, S1; A1, B1) is a separating group of G. Since x2x3 ∈ E0, A1 is

an E0-edge-vertex-cut fragment and A1 ⊂ A, which contradicts to that A is

an E0-edge-vertex-cut end-fragment. Hence, A ∩ B′ = {x3}. Then we have

that d(x2) = d(x3) = 4. Let S ∩ S ′ = {a, b}. Obviously, we have that

ax2, ax3, bx2, bx3 ∈ E(G). Since C is a longest cycle of G, it is easy to see that
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a, b ∈ V (C). So in this case the conclusion of the lemma holds.

Subcase 1.3.2. |S ∩ S ′| = 1.

Then |A′ ∩ S| = |A ∩ S ′| = 1. Since |X2| = 3, by an argument analo-

gous to that used in Subcase 1.3.1 we can show that A ∩ B′ = {x3}. Let

A ∩ S ′ = {a}, S ∩ S ′ = {b}, B′ ∩ S = {c} and S ′ ∩ B = {u}. Since |X3| = 3

and G is 4-connected, we have that B ∩ B′ = Ø. Obviously, we have that

d(x3) = d(c) = 4, x3c ∈ E(G), ΓG(x3) ∩ ΓG(c) = {a, b} and {x3, c} ∩ A 6= Ø.

If x3c ∈ E(C), since ax3ca and bx3cb are triangles, we have a, b ∈ V (C), and

so the conclusions of Lemma 4.1.1 hold. Hence, we may assume x3c /∈ E(C).

Then we have that {ax3, bx3} ∩ E(C) 6= Ø, and so c ∈ V (C). It suffices to

prove a, b ∈ V (C).

First we claim a ∈ V (C). If not, then ax3, ac /∈ E(C). Since cx3 /∈ E(C)

and bx3 ∈ E(C), we have c ∈ V (C), and hence bc, cu ∈ E(C). Noticing that

E(C) ⊂ EN(G), we have bc ∈ EN(G). However, bc ∈ E([S]), and use Theorem

2.1.4 we have bc ∈ ER(G), a contradiction. Therefore, a ∈ V (C).

Next we claim b ∈ V (C). If not, then bx3, bc /∈ E(C). Since c ∈ V (C),

we have that ac, cu, ax3 ∈ E(C). Consider a separating group (ax3, T
′; C ′, D′)

such that a ∈ C ′ and x3 ∈ D′. Then c ∈ T ′. Since ΓG(c) = {x3, a, b, u} and

au /∈ E(G), we have that b ∈ C ′ and u ∈ D′. Noticing ac ∈ EN(G), using The-

orem 2.1.2 we have that C ′ = {a, b}, and so ab ∈ E(G). Since C is a longest

cycle of G, we have b ∈ V (C). So in this case the conclusions of Lemma 4.1.1

hold.

Subcase 1.3.3. S ∩ S ′ = Ø.

Then we have that |A∩S ′| = |A′∩S| = 2. Let A∩S ′ = {a, b}, B′∩S = {c}
and B ∩ S ′ = {u}. Since |X3| = 2, we have that B ∩B′ = Ø. By an argument

analogous to that used in Subcase 1.3.1 we can show that A ∩ B′ = {x3}.
Then ΓG(x3) = {x2, a, b, c} and ΓG(c) = {x3, a, b, u}. If cx3 ∈ E(C), by an

argument analogous to that used in Subcase 1.3.2 we can deduce the con-
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clusions of Lemma 4.1.1. If cx3 /∈ E(C), we may assume that ax3 ∈ E(C).

Then c ∈ V (C). We claim b ∈ V (C). If not, then ac, uc ∈ E(C). Consider

a separating group (ax3, T1; C1, D1) such that x3 ∈ C1 and a ∈ D1. Then

c ∈ T1. Since ac ∈ EN(G), using Theorem 2.1.2 we have that |D1| = 2.

Since ΓG(c) = {x3, a, b, u}, we have that b ∈ D1 or u ∈ D1. If u ∈ D1, then

au ∈ E(G), contradicting that a ∈ A and u ∈ B; if b ∈ D1, then ab ∈ E(G),

and so b ∈ V (C), a contradiction. Hence, b ∈ V (C). Since d(x3) = d(c) = 4

and ΓG(x3) ∩ ΓG(c) = {a, b}, in this case Lemma 4.1.1 is true.

Subcase 1.4. B ∩ S ′ = Ø = B′ ∩ S.

Then B∩B′ = Ø, B′ is an E0-edge-vertex-cut fragment and B′ ⊂ A, which

contradicts that A is an E0-edge-vertex-cut end-fragment. So, Subcase 1.4

does not occur.

Case 2. x3 ∈ B′ ∩ S and x1 ∈ A′ ∩B.

By arguments analogous to that used in Subcase 1.3.2 we can deduce that

A ∩ A′ = {x2}, A ∩ S ′ = {a}, S ∩ A′ = {b}, S ∩ B′ = {x3, u} and S ∩ S ′ = Ø.

Hence d(x2) = d(a) = 4, ax2 ∈ E(G) and ΓG(x2) ∩ ΓG(a) = {b, x3}. Since

x2x3 ∈ E(C) and ax2x3a is a triangle, we have a ∈ V (C). We claim b ∈ V (C).

If not, then bx2, ba /∈ E(C), and so ax3, au ∈ E(C). Consider a separating

group (ax3, T
′; C ′, D′) such that a ∈ C ′ and x3 ∈ D′, then x2 ∈ T ′. Since

ΓG(x2) = {x3, a, b, x1} and ab ∈ E(G), we have that b ∈ C ′ and x1 ∈ D′.

Noticing x2x3 ∈ EN(G), from Theorem 2.1.2 we have that C ′ = {x3, x1},
and so x1x3 ∈ E(G), contradicting to that x1 ∈ A′ and x3 ∈ B′. Therefore,

b ∈ V (C), and so in this case lemma holds.

Case 3. x3 ∈ A ∩B′ and x1 ∈ B ∩ S ′.

By arguments analogous to that used in Case 2 we can deduce that A∩A′ =

{x2}, S ∩ A′ = {b}, A ∩ S ′ = {a} and S ∩ S ′ = Ø. Since A is an E0-edge-

vertex-cut end-fragment, by arguments analogous to that used in Subcase

1.3.1 we can deduce that A ∩ B′ = {x3}. Hence d(x2) = d(b) = 4 and
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ΓG(x2) ∩ ΓG(b) = {a, x1}. Since x1x2, x2x3 ∈ E(C) and bx1x2b and ax2x3a

are triangles, we have a, b ∈ V (C), and so in this case lemma 4.1.1 holds.

Case 4. x3 ∈ B′ ∩ S and x1 ∈ B ∩ S ′.

By arguments analogous to that used in Case 2 we can deduce that A∩A′ =

{x2}, S ∩A′ = {b}, A∩S ′ = {a} and S ∩S ′ = Ø. Hence, d(x2) = d(b) = 4 and

ΓG(x2) ∩ ΓG(b) = {a, x1}. Since x1x2, x2x3 ∈ E(C), and bx1x2b and ax2x3a

are triangles, we have a, b ∈ V (C). So in this case Lemma 4.1.1 holds. This

completes the proof of the Lemma 4.1.1. ¤

4.2 Removable Edges on Longest Cycles

Before proceeding, we introduce the following notations.

Definition 4.2.1. Let G be a 4-connected graph and H be a subgraph of

G. If V (H) = {u, v, x, z}, E(H) = {xz, ux, vx, uz, vz} and d(x) = d(z) = 4,

then H is called a bi-triangle, and x, z are called its inner vertices. If a cycle

C of G contains the vertices u, v, x and z, we say that C passes through the

bi-triangle H.

We now have all the ingredients to present and prove the two main results

of this chapter.

Theorem 4.2.1. Let G be a 4-connected graph with |G| ≥ 8. If a longest

cycle C of G does not pass through any bi-triangle, then C contains at least

two removable edges.

Proof. By contradiction. Suppose C contains at most one removable edge of

G. Let F = E(C)∩ER(G). Then |F | ≤ 1. Let E0 = E(C)−F , and so E0 6= Ø.

Then for an edge uw in E0, there is a separating group (uw, S ′; A′, B′) of G such

that u ∈ A′ and w ∈ B′. Since |F | ≤ 1, we have that (E(A′)∪[A′, S ′])∩F = Ø,

or (E(B′) ∪ [B′, S ′]) ∩ F = Ø. Without loss of generality, we assume that

(E(A′) ∪ [A′, S ′]) ∩F = Ø. Since A′ is an E0-edge-vertex-cut fragment, there
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must exist an E0-edge-vertex-cut end-fragment contained in A′, say A. Then

corresponding to A there is a separating group (xy, S; A,B) of G such that

x ∈ A, y ∈ B, |S| = 3 and xy ∈ E0. Obviously, (E(A) ∪ [A, S]) ∩ F = Ø.

Since C is a cycle of G, there exists an edge xz ∈ E(C)∩ (E(A)∪ [A, S]) 6= Ø.

Analogously, we consider the separating group (xz, S ′; A′, B′) of G such that

x ∈ A′, z ∈ B′. By analogous arguments as used in the proof of Lemma 4.1.1

we can show that C passes through at least one bi-triangle, which contradicts

the assumption of the theorem. This completes the proof. ¤

Theorem 4.2.2. Let G be a 4-connected graph with |G| ≥ 8. If a longest

cycle C of G passes through at most one bi-triangle, then C contains at least

one removable edge.

Proof. By contradiction. Suppose C does not contain any removable edge.

Let E0 = E(C). If C does not pass through any bi-triangle, then by Theorem

4.2.1 the theorem holds. So, next we assume that C passes through precisely

one bi-triangle H as defined in Definition 4.2.1. We consider an E0-edge-vertex-

cut end-fragment A and its corresponding separating group (ww′, S; A,B) of G

such that w ∈ A and w′ ∈ B. If xz = ww′, we may assume that x = w, z = w′.

Then from Lemma 4.1.1 there exists an inner vertex x′ ∈ A and x′ ∈ V (C). Let

H ′ be the bi-triangle containing x′ as its inner vertex. By Lemma 4.1.1 we know

that C passes through H ′. It is easy to see that V (H ′) ⊂ V (A)∪V (S), and so

z /∈ V (H ′) and H 6= H ′, which contradicts that C passes through only one bi-

triangle. If xz 6= ww′, using Lemma 4.1.3 we have that V (H) ⊂ V (A)∪ V (S),

and so V (H) ∩ V (B) = Ø. Then B must contain an E0-edge-vertex-cut end-

fragment B′ satisfying V (B′) ∩ V (H) = Ø. Since B′ is an E0-edge-vertex-cut

end-fragment, by Lemma 4.1.1 there are vertices x′, z′, u′, v′ ∈ V (C) such that

x′z′ ∈ E(G), d(x′) = d(z′) = 4, ΓG(x′)∩ΓG(z′) = {u′, v′} and {x′, z′}∩B′ 6= Ø.

So C passes through the bi-triangle H ′ and H ′ 6= H, which contradicts that C

passes through only one bi-triangle. This completes the proof. ¤



Chapter 5

Removable Edges on a Hamilton
Cycle in a 4-Connected Graph

In this chapter we study the distribution of removable edges on a Hamilton

cycle in a 4-connected graph, and give examples to show that some results are

in some sense best possible.

5.1 Some Preliminary Results

Before we give the main results of this chapter, we first show the following
Lemma.

Lemma 5.1.1. Let G be a 4-connected graph, E0 ⊂ EN(G) and E0 6= Ø.
Let (xy, S; A,B) be a separating group of G such that x ∈ A, y ∈ B, S =
{a, b, c}, xy ∈ E0. If A is an E0-edge-vertex end-fragment of G, and |A| ≥ 3,
then one of the following conclusions (i),(ii) or (iii) holds:

(i) (E(A) ∪ [A, S]) ∩ E0 = Ø.

(ii) There exists a separating group (x′y′, S ′; A′, B′) of G such that x′ ∈ A′, y′ ∈
B′, x′y′ ∈ E0, B′ is a 1-edge-vertex-cut atom, and |A ∩B′| = |B′ ∩ S| = 1.

(iii) There exists a separating group (xy′, S ′; A′, B′) of G such that x ∈ A′, y′ ∈
B′, xy′ ∈ E0, A ∩ A′ = {x}, |A ∩ S ′| = 1, A ∩B′ = {y′}, |B′ ∩ S| = 2.

Proof. (E(A)∪ [A, S])∩E0 = Ø. Then conclusion (i) holds. So next we may

assume that (E(A)∪[A, S])∩E0 6= Ø, and so we have that either E(A)∩E0 6= Ø

57
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or [A, S] ∩ E0 6= Ø holds. We distinguish the following cases to complete the

proof.

Case 1. There exists an edge uz ∈ E(A) ∩ E0.

We consider the separating group (uz, T ; C, D) such that u ∈ C, z ∈ D.

Then we have u ∈ A ∩ C, z ∈ A ∩D. Let

X1 = (C ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T )

X2 = (A ∩ T ) ∪ (S ∩ T ) ∪ (D ∩ S)

X3 = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T )

X4 = (B ∩ T ) ∪ (S ∩ T ) ∪ (C ∩ S)

We distinguish the following subcases to complete the proof of Case 1.

Subcase 1.1. x 6= u. Then we have x ∈ A ∩ C, A ∩ T , or A ∩D.

(1.) x ∈ A ∩ C. Then we have that y ∈ B ∩ C or B ∩ T .

(1.1.) y ∈ B ∩ C. Since A ∩ D 6= Ø, X2 is a vertex-cut of G − uz. Since

G is 4-connected, |X2| ≥ 3. By similar arguments, we get that |X4| ≥ 3.

Noticing that |X2| + |X4| = |S| + |T | = 6, we have |X2| = |X4| = 3, and so

|S ∩ C| = |A ∩ T |, |B ∩ T | = |D ∩ S|. First, we claim that A ∩ D = {z}.
Otherwise, |A ∩ D| ≥ 2. Let A1 = A ∩ D,S1 = X2, B1 = G − uz − S1 − A1.

Then (uz, S1; A1, B1) is a separating group of G. Since uz ∈ E0, A1 is an

E0-edge-vertex-cut fragment contained in A, which contradicts the fact that

A is an E0-edge-vertex-cut end-fragment. Hence A ∩D = {z}. Since |D| ≥ 2

and D is a connected subgraph of G, D ∩ S 6= Ø 6= B ∩ T . Combining with

|D ∩ S| = |B ∩ T |, next we make observations on |D ∩ S| as follows:

(1.1.1.) |D ∩ S| = |B ∩ T | = 3. Noticing |S| = |T | = 3, it is easy to see that
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|X1| = 0. Then {z, y} is a 2-vertex-cut of G, a contradiction.

(1.1.2.) |D∩S| = |B∩T | = 2. Since X1 is a vertex-cut of G−uz−xy and G is

4-connected, we have |X1| ≥ 2, which implies |S∩C| = |A∩T | = 1, |S∩T | = 0.

Noticing x, u ∈ A ∩ C, we have |A ∩ C| ≥ 2. Let A1 = A ∩ C, S1 = {z} ∪X1,

B1 = G − xy − X1 − A1. Then (xy, S1; A1, B1) is a separating group of G.

Since xy ∈ E0, A1 is an E0-edge-vertex-cut fragment contained in A, which

contradicts the fact that A is an E0-edge-vertex-cut end-fragment.

(1.1.3.) |B ∩ T | = |D ∩ S| = 1. Obviously, |S ∩ T | ≤ 2. We claim that

S ∩ T 6= 2. Otherwise, |S ∩ T | = 2, and then |C ∩ S| = |A ∩ T | = 0.

Let A1 = A ∩ C, S1 = (S ∩ T ) ∪ {z}, B1 = G − xy − S1 − A1. Then

(xy, S1; A1, B1) is a separating group of G. Since xy ∈ E0, A1 is an E0-

edge-vertex-cut fragment contained in A, which contradicts the fact that A

is an E0-edge-vertex-cut end-fragment. Hence |S ∩ T | 6= 2, i.e., |S ∩ T | ≤ 1.

Then we have |X3| ≤ 3, and so B ∩ D = Ø. It is easy to see that D is a

1-edge-vertex-cut atom, and |A ∩ D| = 1, |S ∩ D| = 1, |B ∩ T | = 1. Let

D = B′, T = S ′, C = A′, u = x′, z = y′. Then conclusion (ii) holds.

(1.2.) y ∈ B∩T . Since A∩D 6= Ø, X2 is a vertex-cut of G−uz. So |X2| ≥ 3,

and hence |D∩S| ≥ |B∩T | ≥ 1. Using |S| = 3, we have |C∩S| ≤ 2. Noticing

that |X2|+ |X4| = |S|+ |T | = 6, it follows |X4| ≤ 3. Since G is 4-connected, we

have B ∩C = Ø. If C ∩S = Ø, then C = A∩C. It is easy to see that C is an

E0-edge-vertex-cut fragment contained in A, which contradicts the fact that

A is an E0-edge-vertex-cut end-fragment. Hence C ∩ S 6= Ø. If S ∩ T 6= Ø,

then |S ∩T | = 1, and |C ∩S| = |D∩S| = 1. Since |D∩S| ≥ |B ∩T |, we have

B ∩ T = {y}. Obviously, now we obtain |X3| = 3, and so B ∩D = Ø. Hence

B = B∩T = {y}, which contradicts |B| ≥ 2, and so S∩T = Ø. If |C∩S| = 2,

then |D ∩ S| = 1, and so |B ∩ T | = 1. Now we have |X3| = 2, so B ∩D = Ø,

and hence B = {y}, which contradicts |B| ≥ 2. Hence, |C ∩ S| = 1, and so

|S ∩ D| = 2. If |B ∩ T | = 1, by similar arguments, we get that |B| = 1, a

contradiction. Hence, |B∩T | = 2, then |A∩T | = 1, and so |X1| = 2. Noticing

that |A∩C| ≥ 2, we let A1 = A∩C, S1 = X1∪{z}, B1 = G−xy−S1−A1, then

(xy, S1; A1, B1) is a separating group of G. Since xy ∈ E0, A1 is an E0-edge-
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vertex-cut fragment contained in A, which contradicts the assumption that A

is an E0-edge-vertex-cut end-fragment. So (1.2) does not occur.

(2.) x ∈ A ∩ T . By Theorem 2.1.4, we know that y /∈ B ∩ T . By

symmetry, we may assume that y ∈ B ∩ C. Since A ∩ D 6= Ø, X2 is a

vertex-cut of G − uz, and so |X2| ≥ 3. By similar arguments, we get that

|X4| ≥ 3. Since |X2| + |X4| = |S| + |T | = 6, we have |X2| = |X4| = 3, and so

|S ∩ C| = |A ∩ T |, |B ∩ T | = |D ∩ S|. By similar arguments as used in (1.1)

we conclude that A ∩D = {z}. Since |D| ≥ 2 and D is a connected subgraph

of G, we have D ∩ S 6= Ø. Since A ∩ C 6= Ø, we find that X1 is a vertex-cut

of G − uz, then |X1| ≥ 3, and so |S ∩ C| ≥ |B ∩ T |, |A ∩ T | ≥ |D ∩ S|. By

|X1|+|X3| = |S|+|T | = 6, we have |X3| ≤ 3. Since G is 4-connected, it follows

that B ∩D = Ø. Noticing |A ∩ T | ≥ |D ∩ S|, we have |D ∩ S| = |B ∩ T | = 1.

Obviously, here D is a 1-edge-vertex-cut atom. Let D = B′, T = S ′, C =

A′, u = x′, z = y′. Then conclusion (ii) holds.

(3.) x ∈ A∩D. By symmetry, analogous arguments as used in (1.) can prove

the conclusion.

Subcase 1.2. u = x.

Then we have that x ∈ A ∩ C, y ∈ B ∩ C or B ∩ T . We distinguish the

following Subcases to complete the proof of Subcase 1.2.

(1.) y ∈ B ∩ C. Since A ∩D 6= Ø, X2 is a vertex-cut of G− xz. Since G is

4-connected, we have |X2| ≥ 3. By similar arguments, we get that |X4| ≥ 3.

Noticing |X2| + |X4| = |S| + |T | = 6, we find |X2| = |X4| = 3, and so

|S ∩C| = |A ∩ T |, |B ∩ T | = |D ∩ S|. First, we claim that A ∩D = {z}. Oth-

erwise, |A ∩D| ≥ 2. Let A1 = A ∩D,S1 = X2, B1 = G− xz − S1 − A1, then

(xz, S1; A1, B1) is a separating group of G. Since xz ∈ E0, A1 is an E0-edge-

vertex-cut fragment contained in A, which contradicts the assumption that A

is an E0-edge-vertex-cut end-fragment. Hence A ∩ D = {z}. Since |D| ≥ 2

and D is a connected subgraph, we have S ∩D 6= Ø. If |D∩S| = |B ∩T | = 3,

then it is easy to see that {y, z} is a 2-vertex-cut of G, a contradiction. So
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|D ∩ S| = |B ∩ T | ≤ 2.

(1.1.) |B∩T | = |D∩S| = 2. Since X1 is a vertex-cut of G−xy−xz, we have

|X1| ≥ 2. Note that |S| = |T | = 3 if and only if |S∩C| = |A∩T | = 1, S∩T = Ø

hold. Here we claim that A ∩ C = {x}. Otherwise, |A ∩ C| ≥ 2, then it

is easy to see that {x} ∪ X1 is a 3-vertex-cut of G, a contradiction. Let

z = y′, C = A′, T = S ′, D = B′. Then conclusion (iii) of the theorem holds.

(1.2.) |B ∩ T | = |D ∩ S| = 1. If |S ∩ T | = 2, then |C ∩ S| = |A ∩ T | = 0.

Here we have |A| = 2, which contradicts |A| ≥ 3. Then we have |S ∩ T | ≤ 1.

So |X3| ≤ 3, and hence B ∩D = Ø. Here D is a 1-edge-vertex-cut atom, and

|A ∩ D| = |D ∩ S| = 1. Let x = x′, z = y′, C = A′, T = S ′, D = B′. Then

conclusion (ii) of theorem holds.

(2.) y ∈ B ∩ T . By Theorem 2.1.2, we obtain |C| = 2. We claim that

C ∩ S 6= Ø. Otherwise, S ∩ C = Ø. Since C is a connected subgraph, we

have B ∩ C = Ø. Then C = A ∩ C, and C is an E0-edge-vertex-cut fragment

contained in A, which contradicts the assumption that A is an E0-edge-vertex-

cut end-fragment. So |A ∩ C| = |S ∩ C| = 1. Noticing |S| = 3, we have

|S ∩ (D ∪ T )| = 2. If B ∩ T = {y}, then |X3| = 3, and so B ∩D = Ø. Here we

find B = {y}, which contradicts |B| ≥ 2. Hence |B ∩ T | ≥ 2. If |B ∩ T | = 3.

Then T ∩(A∪S) = Ø and |X1| = 1. Here we get that X1∪{y, z} is a 3-vertex-

cut of G, a contradiction. So |B ∩ T | = 2, and |A ∩ C| = |S ∩ C| = 1. Let

x = y′, z = x′, C = B′, T = S ′, D = A′. So conclusion (ii) of theorem holds.

Case 2. There exists an edge uz ∈ [A, S] ∩ E0.

Obviously, u 6= x. Otherwise, u = x, and by Theorem 2.1.2, we obtain

|A| = 2, which contradicts |A| ≥ 3. Analogously, we consider the sepa-

rating group (uz, T ; C, D) such that u ∈ C, z ∈ D. It is easy to see that

u ∈ A ∩ C, z ∈ S ∩D. The definition of X1, X2, X3, X4 is same as in Case 1.

Here we distinguish subcases to complete the proof.

Subcase 2.1. x ∈ A ∩ C, y ∈ B ∩ C.
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Since B ∩ C 6= Ø, X4 is a vertex-cut of G − xy, and so |X4| ≥ 3. Since

|X2|+ |X4| = |S|+ |T | = 6, we have |X2| ≤ 3, and so A∩D = Ø. If A∩T = Ø,

then A = A∩C, and so |A∩C| ≥ 3. Since X1 is a vertex-cut of G− uz − xy,

then |X1| ≥ 2. Note that D∩S 6= Ø if and only if |X1| = |S∩(C∪T )| = 2. We

let A1 = A−{u}, S1 = X1∪{u}, B1 = G−xy−S1−A1. Then (xy, S1; A1, B1)

is a separating group of G, and A1 is an E0-edge-vertex-cut fragment con-

tained in A, which contradicts that A is an E0-edge-vertex-cut end-fragment.

So A ∩ T 6= Ø, and hence |T ∩ (B ∪ S)| ≤ 2. If S ∩D = {z}. Then |X3| ≤ 3,

and so B∩D = Ø and D = {z}, which contradicts |D| ≥ 2. Hence |D∩S| ≥ 2,

and then |S∩(C∪T )| ≤ 1. Noticing that |X4| ≥ 3, we have |B∩T | ≥ 2, which

implies |B ∩ T | = 2, |A ∩ T | = 1. So S ∩ T = Ø. Here we have |X1| = 2. Let

A1 = A ∩ C, S1 = X1 ∪ {z}, B1 = G − xy − S1 − A1. Then (xy, S1; A1, B1) is

a separating group of G, and A1 is an E0-edge-vertex-cut fragment contained

in A, which contradicts the assumption that A is an E0-edge-vertex-cut end-

fragment. Therefore, Subcase 2.1 does not occur.

Subcase 2.2. x ∈ A ∩ C, y ∈ B ∩ T .

Since X1 is a vertex-cut of G− xy − uz, we have |X1| ≥ 2. First, we show

that A ∩ T = Ø holds. If A ∩ T 6= Ø, then we claim that |X1| ≥ 3. Other-

wise, |X1| = 2. Obviously, |A ∩ C| ≥ 2. Let A1 = A ∩ C, S1 = X1 ∪ {z}, B1 =

G−xy−S1−A1. Then (xy, S1; A1, B1) is a separating group of G, and A1 is an

E0−edge-vertex-cut fragment contained in A, which contradicts the assump-

tion that A is an E0−edge-vertex-cut end-fragment. So, |X1| ≥ 3, and |C∩S| ≥
|B ∩ T | ≥ 1, |A ∩ T | ≥ |D ∩ S| ≥ 1, which implies that |B ∩ T | = |D ∩ S| = 1.

Since |X1| + |X3| = 6, we have |X3| ≤ 3, and so B ∩ D = Ø. By |D| ≥ 2,

we know that A ∩ D 6= Ø and then we have |X2| ≥ 4 and |X4| ≤ 2. Hence

|B ∩ C| = 0, and B = {y}, which contradicts |B| ≥ 2. Therefore, A ∩ T = Ø.

Since A is a connected subgraph, A ∩ D = Ø, and so |A| = |A ∩ C| ≥ 3.

Since D ∩ S 6= Ø and |S| = 3, we have |X1| = |S ∩ (C ∪ T )| = 2. We let

A1 = A−{u}, S1 = X1 ∪{u}, B1 = G− xy−S1−A1. Then (xy, S1; A1, B1) is

a separating group of G, and A1 is an E0−edge-vertex-cut fragment contained

in A, a contradiction to the assumption. Therefore, Subcase 2.2 does not oc-
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cur.

Subcase 2.3. x ∈ A ∩ T, y ∈ B ∩ C.

Since B ∩ C 6= Ø, X4 is a vertex-cut of G − xy, and then |X4| ≥ 3. Since

|X2| + |X4| = |S| + |T | = 6, we have |X2| ≤ 3, and so A ∩ D = Ø. Analo-

gously, since X1 is a vertex-cut of G − uz, we have |X1| ≥ 3. Noticing that

|X1|+ |X3| = 6, we find |X3| ≤ 3, and so B∩D = Ø. Hence |D| = |D∩S| ≥ 2.

Noticing that |S| = 3, we have |S ∩ (C ∪ T )| ≤ 1. From |X4| ≥ 3, we get that

|B ∩ T | ≥ 2. Then it is easy to see that |A ∩ T | = 1, S ∩ T = Ø. Obviously,

|X1| ≤ 2, which contradicts the fact that |X1| ≥ 3. So, Subcase 2.3 does not

occur.

Subcase 2.4. x ∈ A ∩ T, y ∈ B ∩D.

Since X1 is a vertex-cut of G− uz, we have |X1| ≥ 3. Similarly, |X3| ≥ 3.

Since |X1| + |X3| = |S| + |T | = 6, we conclude |X1| = |X3| = 3. Then we get

that |A ∩ T | = |D ∩ S|, |C ∩ S| = |B ∩ T |. First, we claim that A ∩ C = {u}.
Otherwise, |A∩C| ≥ 2. We let A1 = A∩C, S1 = X1, B1 = G− uz − S1 −A1.

Then (uz, S1; A1, B1) is a separating group of G, and A1 is an E0−edge-

vertex-cut fragment contained in A, which contradicts the assumption that

A is an E0−edge-vertex-cut end-fragment. So A ∩ C = {u}. Since C is

a connected subgraph and |C| ≥ 2, we have |C ∩ S| = |B ∩ T | ≥ 1. If

|C ∩S| = |B∩T | = 2, then S∩T = Ø, |A∩T | = |D∩S| = 1. Clearly, we have

|X2| = 2. Then A ∩ D = Ø. Here we have that |A| = 2, which contradicts

|A| ≥ 3. So |S ∩ C| = |B ∩ T | = 1, and C is a 1-edge-vertex-cut atom, and

|A ∩ C| = |C ∩ S| = 1. Let u = y′, z = x′, C = B′, T = S ′, D = A′. Then

conclusion (ii) holds.

Subcase 2.5. x ∈ A ∩D, y ∈ B ∩ T .

Since X2 is a vertex-cut of G − xy, we have |X2| ≥ 3. By |X2| + |X4| =

|S|+ |T | = 6, we know |X4| ≤ 3. Then B ∩C = Ø. By similar arguments, we

obtain B∩D = Ø. Then we have that |B| = |B∩T | ≥ 2. Noticing that A is a
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connected subgraph, we have A∩T 6= Ø, which implies |A∩T | = 1, |B∩T | = 2

and S ∩ T = Ø. Since |X2| ≥ 3, we have that |D ∩ S| ≥ 2 and |C ∩ S| ≤ 1.

Here we have that |X1| ≤ 2, which contradicts the assumption that X1 is a

vertex-cut of G− uz. So Subcase 2.5 does not occur.

Subcase 2.6. x ∈ A ∩D, y ∈ B ∩D.

Since X2 is a vertex-cut of G − xy, we have |X2| ≥ 3. By |X2| + |X4| =
|S| + |T | = 6, we know that |X4| ≤ 3, and so B ∩ C = Ø. We claim that
C∩S 6= Ø. Otherwise, it is easy to see that C is an E0-edge-vertex-cut fragment
contained in A, contradicting the assumption that A is an E0-edge-vertex-cut
end-fragment. So C∩S 6= Ø. Noticing that X1 is a vertex-cut of G−uz, we get
|X1| ≥ 3. Similarly, we have that |X3| ≥ 3. By |X1|+ |X3| = |S|+ |T | = 6, we
know that |X1| = |X3| = 3, and so |C∩S| = |B∩T | ≥ 1, |A∩T | = |D∩S| ≥ 1.
If |C ∩ S| = 2, then |A ∩ T | = |D ∩ S| = 1, and so |X2| = 2, a contradiction.
Therefore, |C ∩ S| = |B ∩ T | = 1. We claim that A ∩ C = {u}. Otherwise,
if |A ∩ C| ≥ 2, we let A1 = A ∩ C, S1 = X1, B1 = G − uz − X1 − A1. Then
(uz, S1; A1, B1) is a separating group of G, and A1 is an E0-edge-vertex-cut
fragment, a contradiction. So A ∩ C = {u}. Let z = x′, u = y′, C = B′, T =
S ′, D = A′. Therefore, conclusion (ii) holds. This completes the proof. ¤

Lemma 5.1.2. Let G be a 4-connected graph and (xy, S; A,B) a separating
group of G such that x ∈ B, y ∈ A. If there exists another edge yz ∈ EN(G)
such that its corresponding separating group (yz, S ′; A′, B′) with y ∈ A′, z ∈ B′

satisfy the following conditions:

(i) A ∩ A′ = {y}, A ∩ B′ = {z}, A ∩ S ′ = {a}, A′ ∩ S = {b}, B′ ∩ S = {u, v}
such that a, b, u, v ∈ G.

(ii) {zu, zv} ∩ EN(G) 6= Ø, ab ∈ EN(G).

Then au and av cannot belong to E(G) simultaneously.

Proof. By contradiction. Assume au, av ∈ E(G). Without loss of generality,

we may assume that zu ∈ EN(G). Then consider the corresponding separating

group (zu, T1; C1, D1) such that z ∈ C1, u ∈ D1. Then we have that z ∈
C1 ∩B′, u ∈ B′ ∩D1. Since azua is a 3-cycle of G, we conclude a ∈ T1, and so

a ∈ S ′ ∩ T1. Let
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Y1 = (A′ ∩ T1) ∪ (S ′ ∩ T1) ∪ (C1 ∩ S ′)

Y2 = (C1 ∩ S ′) ∪ (S ′ ∩ T1) ∪ (B′ ∩ T1)

Y3 = (B′ ∩ T1) ∪ (S ′ ∩ T1) ∪ (S ′ ∩D1)

Y4 = (D1 ∩ S ′) ∪ (S ′ ∩ T1) ∪ (A′ ∩ T1)

Obviously, y ∈ A′ ∩ C1 or A′ ∩ T1. Next we distinguish the following cases to

complete the proof.

Case 1. y ∈ A′ ∩ C1.

Then Y1 is a vertex-cut of G−yz. Since G is 4-connected, we have |Y1| ≥ 3.

By similar arguments, we deduce that |Y3| ≥ 3. Since |Y1|+ |Y3| = |S ′|+ |T1| =
6, we obtain |Y1| = |Y3| = 3, and so |A′ ∩ T1| = |S ′ ∩D1|, |S ′ ∩C1| = |B′ ∩ T1|.
Since a ∈ S ′∩T1 and ab ∈ EN(G), by Theorem 2.1.4 we find b 6∈ T1 and b 6∈ S ′.

Since by ∈ E(G), we have that b ∈ A′ ∩ C1. Since zv ∈ E(G) and v ∈ B′, we

know v ∈ B′ ∩ (C1 ∪ T1). Hence, |A′ ∩ T1| = |S ′ ∩D1| = 0, 1 or 2.

Now we distinguish the following Subcases for the value of |A′ ∩ T1| and

|D1 ∩ S ′|.

Subcase 1.1. |A′ ∩ T1| = |D1 ∩ S ′| = 2.

Noticing that |T1| = |S ′| = 3 and a ∈ S ′∩T1, we have |S ′∩C1| = |B′∩T1| =
0. Since avza is a 3-cycle of G, we have that v ∈ B′∩C1, and so |B′∩C1| ≥ 2.

Then {a, z} is a 2-vertex-cut of G, which contradicts that G is a 4-connected

graph.

Subcase 1.2. |A′ ∩ T1| = |D1 ∩ S ′| = 1.
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Then |S ′ ∩ T1| ≤ 2. First, we claim that B′ ∩ D1 = {u}. Otherwise,

|B′ ∩ D1| ≥ 2. Since ΓG(a) = {y, z, u, v, b}, by the foregoing arguments we

have that ΓG(a)∩(B′∩D1) = {u}. Then {u}∪(Y3−{a}) is a 3-vertex-cut of G, a

contradiction. Hence, D1∩B′ = {u}. Let D1∩S ′ = {u1}. If S∩T1 = {a}, then

|Y4| = 3. Since G is 4-connected, we deduce D1 ∩ A′ = Ø. Then u1 ∈ ΓG(a).

However, it is easy to see that u1 /∈ {y, z, b, u, v} holds, a contradiction. There-

fore, |S ′∩T1| = 2. It is easy to see that ΓG(a)∩ (A′∩D1) = Ø. If A′∩D1 6= Ø,

then Y4−{a} is a 3-vertex-cut of G, a contradiction. If A′∩D1 = Ø, it is easy

to see that au1 ∈ E(G) holds. However, u1 6∈ {b, u, v, y, z}, a contradiction.

Subcase 1.3. |A′ ∩ T1| = |D1 ∩ S ′| = 0.

Since D1 is a connected subgraph of G, we find A′∩D1 = Ø. Since |D1| ≥ 2,

we have that |D1 ∩ B′| ≥ 2. By an analogous argument we can deduce that

ΓG(a)∩ (D1 ∩B′) = {u}. Since |Y3| = |T1| = 3, {u} ∪ (Y3−{a}) is a 3-vertex-

cut of G, a contradiction.

Case 2. y ∈ A′ ∩ T1.

Since yz ∈ EN(G), by Theorem 2.1.2 we conclude that |C1| = 2. Since

C1 is a connected subgraph of G, we find that A′ ∩ C1 = Ø. If S ′ ∩ C1 6= Ø.

Since |C1| = 2, we have that |S ′ ∩ C1| = 1. Note that a ∈ S ′ ∩ T1, we obtain

|D1 ∩ S ′| ≤ 1. Since Y3 is a vertex-cut of G− zu, it follows that |Y3| ≥ 3, and

so |B′ ∩ T1| ≥ 1. Noticing |T1| = 3, we have that A′ ∩ T1 = {y} and |Y4| = 3.

Since G is 4-connected, we deduce A′ ∩D1 = Ø, and therefore, we have that

A′ = {y}, which contradicts |A′| ≥ 2. If S ′∩C1 = Ø, then |B′∩C1| = 2. Since

A′ ∩ T1 6= Ø, we have that |Y2| = |T1 ∩ (B′ ∪ S ′)| ≤ 2, and so {z} ∪ Y2 is a

vertex-cut of G. However, |{z} ∪ Y2| < 4, a contradiction.

From all the above arguments we conclude that au, av cannot belong to

E(G) simultaneously. This completes the proof. ¤
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5.2 Removable Edges on the Hamilton Cycles

Before we present our main results, we first introduce the following definition:

Definition 5.2.1. Let G be a 4-connected graph, C a cycle of G, and

(xy, S; A,B) a 2-atom separating group. We say that C passes through a

2-atom if x, y ∈ V (C).

The following lemma is used in the proof of the main result:

Lemma 5.2.1. Let G be a 4-connected graph with |G| ≥ 7, and let C be

a cycle which does not pass through any 2-atom. Then there are at least two

removable edges on C.

Proof. By contradiction. Assume that C does not pass through any 2-atom of

G, and there is at most one removable edge of G in C. Let F = E(C)∩ER(G),

then |F | ≤ 1. Denote E(C) − F by E0. We consider the separating group

(uw, S ′; A′, B′) such that u ∈ A′, w ∈ B′ and uw ∈ E0. By |F | ≤ 1 we know

that (E(A′)∪ [A′, S ′])∩ F = Ø or (E(B′)∪ [S ′, B′])∩ F = Ø. Without loss of

generality, we may assume (E(A′)∪ [A′, S ′])∩ F = Ø. Since A′ is an E0-edge-

vertex-cut fragment, A′ must contain an E0-edge-vertex-cut end-fragment as

its subgraph, say A. Then we have (E(A) ∪ [A, S]) ∩ F = Ø. We consider a

separating group (xy, S; A,B) such that x ∈ A, y ∈ B with xy ∈ E0. Since

C does not pass through any 2-atom, we have |A| ≥ 3. By Lemma 5.1.1, we

know that one of the three conclusions of Lemma 5.1.1 holds. Here we discuss

them as follows:

(1.) Since (E(A) ∪ [A, S]) ∩ F = Ø, obviously, the conclusion (i) does not

hold.

(2.) By the assumption, we know that the conclusion (ii) of Lemma 5.1.1

does not hold.

(3.) If the conclusion (iii) of Lemma 5.1.1 holds, let A ∩ S ′ = {w}, B′ ∩ S =

{u, v}, ΓG(y′) = {w, u, v, x}. Since |B′| ≥ 3, by Theorem 2.1.2 we have

y′w ∈ ER(G). Noticing that C is a cycle and (E(A) ∪ [A, S]) ∩ F = Ø, we
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conclude {y′u, y′v} ∩EN(G) 6= Ø. By Lemma 5.1.2, we have that wu, wv can-

not belong to E(G) simultaneously. Without loss of generality, we may assume

that wu /∈ E(G). Let A0 = A−{y′}, S0 = S∪{y′}−{u}, B0 = G−xy−S0−A0.

Then A0 is an E0-edge-vertex-cut fragment contained in A, which contradicts

the assumption that A is an E0-edge-vertex-cut end-fragment. So, Conclusion

(iii) does not hold. This complete the proof. ¤

Now we present our main results.

Theorem 5.2.1. Let G be a 4-connected graph with |G| ≥ 7, and C a Hamil-

ton cycle of G. If C does not pass through any 2-atom of G, then there are at

least three removable edges on C.

Proof. By contradiction. Assume that C does not pass through any 2-atom.

If there exists a chord e of C such that e ∈ EN(G), then e separates the cycle C

into two cycles C1 and C2. By Lemma 5.2.1 we know that both C1 and C2 have

at least two removable edges, respectively, so that C has at least four remov-

able edges. The conclusion holds. Now we assume that every chord of C is a

removable edge of G, and C has at most two removable edges. By Lemma 5.2.1

we know that C just has two removable edges. Let E(C) ∩ ER(G) = {e1, e2},
then we have that E(C) − {e1, e2} ⊂ EN(G). We take xy ∈ E(C) − {e1, e2}
and its corresponding separating group (xy, S; A,B) such that x ∈ A, y ∈ B.

Let E0 = E(C) − {e1, e2}, then A and B are E0-edge-vertex-cut fragments.

Since every E0-edge-vertex-cut fragment contains an E0-edge-vertex-cut end-

fragment as its subgraph, without loss of generality, we may assume that A is

an E0-edge-vertex-cut end-fragment.

If e1, e2 ∈ E[S]. Since C is a cycle, we deduce that xz ∈ E(C) ∩ EN(G) ∩
(E(A) ∪ [A, S]) (z 6= y). If xz ∈ [A, S], then we find |A| = 2, a contra-

diction. So, we have that xz ∈ E(A) ∩ EN(G). We consider the separating

group (xz, S1; A1, B1) such that x ∈ A1, z ∈ B1. If y ∈ B ∩ S1, then we obtain

|A1| = 2, a contradiction. So y ∈ A1∩B. Let Y1 = (A1∩S)∪(S∩S1)∪(B∩S1),

Y2 = (A ∩ S1) ∪ (S ∩ S1) ∪ (B1 ∩ S). Since Y1 is a vertex-cut of G − xy

and Y2 is a vertex-cut of G − xz, which implies that both |Y1| ≥ 3 and
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|Y2| ≥ 3 holds. Since |Y1| + |Y2| = 6, we have that |Y1| = |Y2| = 3, and

so |A∩S1| = |A1 ∩S|, |B1 ∩S| = |B ∩S1|. We claim that A∩B1 = {z} holds.

Otherwise, (xz, Y2) is a separating pair of G and A∩B1 is an E0-edge-vertex-cut

fragment contained in A. This contradicts the fact that A is an E0-edge-vertex-

cut end-fragment. Let zz′ ∈ E(C), then zz′ ∈ EN(G). If z′ ∈ S1, by Theorem

2.1.2 we conclude |B1| = 2, a contradiction. So z′ ∈ B1. Since A ∩ B′ = {z},
we have z′ ∈ S. From e1, e2 ∈ [S], we claim that S ∩ S1 6= Ø. Otherwise,

|B1 ∩ S| = 3 holds. Then {z, y} is a 2-vertex-cut of G, a contradiction. So

|S ∩ S1| ≥ 1, and then |B1 ∩ S| ≤ 2. If |B1 ∩ S| = 2, then |S ∩ S1| = 1, and

{z, y} ∪ (S ∩ S1) is a 3-vertex-cut of G, a contradiction. So, B1 ∩ S = {z′}. If

|S ∩ S1| = 2, then A ∩ S1 = Ø = A1 ∩ S. We claim that |A| = 2. Otherwise,

|A| ≥ 3 holds, and so |A ∩ A1| ≥ 2. Then {x} ∪ (S ∩ S1) is a 3-vertex-cut of

G, a contradiction. So, |A| = 2, a contradiction. Hence, |S ∩ S1| = 1, and

|A1∩S| = 1. Here we have that |B∩S1|+|S∩S1|+|B1∩S| = 3, so B∩B1 = Ø,

and |B1| = 2, a contradiction.

Therefore, next we may assume that either (E(A) ∪ [A, S]) ∩ {e1, e2} 6= Ø

or (E(B) ∪ [B, S]) ∩ {e1, e2} 6= Ø holds. If (E(B) ∪ [B, S]) ∩ {e1, e2} = Ø,

then B must contain an E0-edge-vertex-cut end-fragment as its subgraph, say

B0, and consider its corresponding separating group (x0y0, S0; A0, B0) such that

x0 ∈ A0, y0 ∈ B0. It is easy to see that |(E(B0)∪ [S0, B0])∩E(C)∩ER(G)| ≤ 1

holds. So, without loss of generality, we may assume |(E(A)∪ [A, S])∩E(C)∩
ER(G)| ≤ 1. Let E1 = E(A) ∪ [A, S].

Since C does not pass through any 2-atom, we have |A| ≥ 3. By Lemma

5.1.1 we know that one of the conclusions (i),(ii) or (iii) holds. Next we will

discuss them respectively.

Case 1. Conclusion (i) holds.

Let t ∈ A−{x}. Since t ∈ C, and d(t) ≥ 4, we have |E1∩E(C)∩ER(G)| ≥
2, which contradicts |E1 ∩ E(C) ∩ ER(G)| ≤ 1.

Case 2. Obviously, according to the assumption, the conclusion (ii) does not
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hold.

Case 3. Conclusion (iii) holds.

We consider a separating group of G as in conclusion (iii) of Lemma 5.1.1.

Let B′ ∩ S = {b, c}, A′ ∩ S = {a}, A ∩ S ′ = {d}. First, we claim that

bd, cd ∈ E(G). Otherwise, we may assume bd /∈ E(G). Let A1 = A−{y′}, S1 =

S−{b}∪{y′}, B1 = G−xy−S1−A1. Then (xy, S1; A1, B1) is a separating group

and A1 is an E0-edge-vertex-cut fragment contained in A, a contradiction. It

is easy to see that (ad, {x, b, c}) is a separating pair of G, so ad ∈ EN(G).

Since every chord of C is removable, we find ad ∈ E(C). From Lemma 5.1.2

we know that y′b, y′c ∈ ER(G). Since |B′| ≥ 3, by Theorem 2.1.2 we know

that dy′ ∈ ER(G).

(1.) dy′ ∈ E(C). Then we have by′, cy′ /∈ E(C). Since ad ∈ E(C), we deduce

bd, cd /∈ E(C). We let P1 denote the path going from vertex y′ to b on C which

does not pass through vertex d, and P2 going from vertex d to b on C and

does not pass through vertex y′. Let C1 = P1 + by′ and C2 = P2 + bd. Obvi-

ously, if bd ∈ ER(G), then neither C1 nor C2 passes through any 2-atom. By

Lemma 5.2.1 we know that there are at least two removable edges on C1 and

C2, respectively. If bd ∈ EN(G), and if C2 pass through a 2-atom, then only

the 2-atom separating group (bd, S0; A0, B0) through which bd passes happens.

We may assume that |A0| = 2. Let A0 = {b, w}, it is easy to see that y′ ∈ S0,

then only w = c holds. However, cd ∈ E(G), a contradiction. Noticing that

dy′ ∈ ER(G) ∩ E(C), so we have that in this case Theorem holds.

(2.) dy′ /∈ E(C). Without loss of generality, we may assume that by′ ∈ E(C).

Next we distinguish the following cases to complete the proof:

(2.1.) bd ∈ E(C). By |E1 ∩ E(C) ∩ ER(G)| ≤ 1 we know that bd ∈ EN(G).

We let P1 denote the path going from vertex y′ to c on cycle C which does not

pass through vertex b, and P2 going from vertex b to c on cycle C which does

not pass through vertex y′. Let C1 = P1 + cy′ and C2 = P2 + bc, then neither

C1 nor C2 passes through any 2-atom of G. By Lemma 5.2.1 we know that
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there are at least two removable edges on C1 and C2, respectively. Noticing

by′ ∈ ER(G) ∩ E(C), the conclusion holds.

(2.2.) cd ∈ E(C). Then bd /∈ E(C). We let P1 denote the path going

from vertex y′ to d on cycle C which does not pass through vertex b, and

P2 going from vertex b to d on cycle C and does not pass through vertex y′.

Let C1 = P1 + dy′ and C2 = P2 + bd. By similar arguments we deduce that

neither C1 nor C2 passes through any 2-atom of G. By Lemma 5.2.1 we know

that there are at least two removable edges on C1 and C2, respectively. Since

by′ ∈ ER(G)∩E(C), we know that in this case theorem holds. This completes

the proof. ¤

Lemma 5.2.2. Let G be a 4-connected graph with |G| ≥ 7, C a cycle which

exactly contains one inner vertex of some maximal l-bi-fan H and does not

pass through any other subgraph belonging to <. Then there are at least two

removable edges on C.

Proof. By contradiction. Assume that there is at most one removable edge

on C. By Theorem 4.2.2 we know there is precisely one removable edges on C.

Let E(C)∩ER(G) = {e} = F . Let H be a maximal l-bi-fan as defined in Def-

inition 1.2.2. Based on the assumption |V (C) ∩ (V (H)− {x1, xl+3})| = 1 and

|E(C) ∩ ER(G)| = 1, it can be checked easily that either x2 ∈ C or xl+2 ∈ C

holds. Without loss of generality, we may assume xl+2 ∈ V (C), and e = axl+2.

By letting S ′ = {a, b, xl+3}, e′ = x2x1, B
′ = {x2, · · · , xl+2}, A′ = G−e′−S ′−B′,

then (e′, S ′; A′, B′) is a separating group of G such that A′ does not contain any

inner vertex of the maximal l-bi-fan. From the assumption we have that A′ does

not contain any inner vertex of subgraph belonging to <. Let E0 = E(C)−{e},
then A′ is an E0-edge-vertex-cut fragment. Obviously, A′ contains an E0-edge-

vertex-cut end-fragment as its subgraph, say A. It is easy to see that A does

not contain any inner vertex of H and (E(A) ∪ [A, S]) ∩ F = Ø. We consider

a separating group (xy, S; A,B) such that x ∈ A, y ∈ B with xy ∈ E0. Next

we will consider the following cases for |A|.

(1.) |A| = 2. Then either A is a 1-edge-vertex-cut atom or a 2-edge-vertex-
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cut atom, say A = {x, z}. Let S = {a, b, c}.

(1.1.) A is a 2-edge-vertex-cut atom. Since xy ∈ E(C) and C is a cycle of G,

we have that {xa, xb, xc, xz} ∩ E(C) 6= Ø. From Lemma 3.1.2 we know that

{xa, xb, xc, xz} ⊂ ER(G), which contradicts (E(A) ∪ [A, S]) ∩ F = Ø.

(1.2.) A is a 1-edge-vertex-cut atom. By noticing that C is a cycle of G

and (E(A) ∪ [A, S]) ∩ F = Ø, we have that {xa, xb, xz} ∩ EN(G) 6= Ø. From

Corollary 3.1.1 we know that x is an inner vertex of one of the subgraphs of

G belonging to <, a contradiction.

(2.) |A| ≥ 3. Then from Lemma 5.1.1 we know that one of the conclusion

(i),(ii) or (iii) of lemma holds.

(2.1.) If conclusion (i) holds. Since C is a cycle, and (E(A)∪ [A, S])∩F = Ø,

a contradiction is obtained.

(2.2.) If conclusion (ii) holds, we let A ∩ B′ = {y′}, ΓG(y′) = {x′, a′, b′, z′}.
Noticing that C is a cycle, and (E(A)∪ [A, S])∩F = Ø, then {a′y′, by′, y′z′}∩
EN(G) 6= Ø. From Corollary 3.1.1 we know that vertex y′ is an inner vertex

of a subgraph belonging to <, a contradiction.

(2.3.) If conclusion (iii) holds. By noticing that C is a cycle, Lemma 5.1.2

yields a contradiction.

Based on the above arguments we know that the assumption is not true.

Therefore, the lemma holds. This completes the proof of lemma.¤

Theorem 5.2.2. Let G be a 4-connected Hamilton graph with |G| ≥ 7, C a

Hamilton cycle of G. Then if C passes through only one subgraph (excluding

maximal l-belt or l-co-belt) belonging to <, but doesn’t pass through any maxi-

mal l-belt or l-co-belt, then there are at least two removable edges on C.

Proof. By contradiction. Assume that C passes through only one subgraph

belonging to < and doesn’t pass through any maximal l-belt or l-co-belt, but

there are at most one removable edge on cycle C. Then we will discuss the
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cases as follows:

Case 1. C passes through helm H.

Let H be defined as in Definition 1.2.1. Since C is a Hamilton cycle,

it is easy to see that there is at least one removable edge on C. Let F =

ER(G) ∩E(C), then |F | = 1. Without loss of generality, we may assume that

F = {x3x4}. According to the assumption, we have that E(C) − {x3x4} ⊂
EN(G). By letting e = x1v1, S

′ = {v2, v3, v4}, B′ = {a, x1, x2, x3, x4}, A′ =

G−e−S ′−B′, then (e, S ′; A′, B′) is a separating group of G such that A′ does

not contain any inner vertex of H with E(C)∩ (E(A′)∪ [A′, S ′])∩ER(G) = Ø.

Let E0 = E(C)−{x3x4}, then A′ is an E0-edge-vertex-cut fragment of G such

that it does not contain any inner vertex of H. Obviously, A′ contains an

E0-edge-vertex-cut end-fragment as its subgraph, say A. It is easy to see that

A does not contain any inner vertex of H and (E(A) ∪ [A, S]) ∩ F = Ø. And

we take a separating group (xy, S; A,B) such that x ∈ A, y ∈ B with xy ∈ E0.

Now we can apply similar arguments as used in Lemma 5.2.2 to get that

the Case 1 yields a contradiction.

Here we give an example to show that in this case the lower bound is sharp.

See figure 5.1.

Example 5.2.1. Let H be a helm as in Definition 1.2.1, V (H) = {a, x1, x2, x3,

x4, v1, v2, v3, v4}, E(H) = {ax1, ax2, ax3, ax4, x1x2, x2x3, x3x4, x4x1, x1v1, x2v2,

noindentx3v3, x4v4}.

Let L = H−{v1, v2, v3, v4}, L′ a copy of L such that V (L′) = {a′, x′1, x′2, x′3,
x′4}. Now we construct a graph G as follows: V (G) = V (L) ∪ V (L′), and

join vertices x1 to x′1, x2 to x′2, x3 to x′3, x4 to x′4, x′2 to x′4, respectively.

(x1x
′
1, {x2, x3, x4}) is a separating pair of G, hence x1x

′
1 ∈ EN(G). By symme-

try, we have that x2x
′
2, x3x

′
3, x4x

′
4 ∈ EN(G). It is easy to see that (a′x′1, {x′2, x′4,

x3}), (a′x′3, {x′2, x′4, x1}) are separating pairs of G. So we have that a′x′1, a
′x′3 ∈
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EN(G). Let C = x1x
′
1a
′x′3x3x4x

′
4x
′
2x2ax1, then C is a Hamilton cycle through

which passes one helm and contains precisely two removable edges x3x4, x
′
2x
′
4.

                        x1 

 x2 

         x3 

             x4 

                                                    x1’ 

                                     x2’ 

                                                                    x3’ 

                                                   x4’ 

Removable edge 

Unremovable edge 

                           a 
                                                      a’ 

Figure 5.1:

Case 2. H is a W ′-framework as defined in Definition 1.2.6.

Let F = E(C) ∩ ER(G). Since C is a Hamilton cycle and by assumption

|E(C)∩ER(G)| = 1, it can be checked easily that y1y2 ∈ E(C) holds. By letting

S = {x1, x3, y4}, B = {x2, y2, y3}, A = G − y1y2 − S − B, then (y1y2, S; A,B)

is a separating group of G such that A does not contain any inner vertex of

H. From the assumption we can get that F ∩ (E(A) ∪ [A, S]) = Ø. We apply

similar arguments as used in Case 1 to prove that the conclusion holds.

Here we give an example to show that in this case the lower bound is sharp.

See figure 5.2.

Example 5.2.2. Let H be a W ′-framework as in Definition 1.2.6 with

V (H) = {x1, x2, x3, y1, y2, y3, y4}. Let L′ be a graph as defined in Example

5.2.1, V (L′) = {a′, x′1, x′2, x′3, x′4}. We construct a graph G as follows: Let

V (G) = V (H) − {y1, y4} ∪ V (L′), E(G) = (E(H) − {y1y2, y3y4}) ∪ E(L′) ∪
{x1x

′
1, y2x

′
4, y3x

′
3, x

′
2x3, x1x

′
3, x

′
1x
′
3}.

It can be checked easily that G is a 4-connected graph. First, we have that

(x1x
′
1, {x′2, x′3, x′4}), (x′2x3, {x′1, x′3, x′4}), (y2x

′
4, {x′1, x′2, x′3}), (y3x

′
3, {x1, x3, y2}),
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(a′x′4, {x′1, x′3, x3}), (a′x′2, {y2, x
′
1, x

′
3}) are separating pairs of G, so x1x

′
1, x

′
2x3,

y2x
′
4, y3x

′
3, a

′x′4, a
′x′2 ∈ EN(G).

Let C = x1x2x3x
′
2a
′x′4y2y3x

′
3x
′
1x1. Then C is a Hamilton cycle through

which passes precisely one W ′-framework and contains two removable edges

y2y3, x
′
1x
′
3.

     x1                                         x2                                                               x3 

                              y2 

Unremovable edge 

                                    y3 

                        Removable edges 

                          x1’ 

                                                 x2’ 

                                              x3’                        x4’ 

                                             a’ 

Figure 5.2:

Case 3. H is a W -framework defined as in Definition 1.2.5.

Since C is a Hamilton cycle and assumption |E(C) ∩ ER(G)| = 1, it

is easy to see that y1y2 ∈ E(C) and y2y3 ∈ E(C) ∩ ER(G). By letting

S = {x1, x3, y4}, B = {x2, y2, y3}, A = G− y1y2−S−B, then (y1y2, S; A,B) is

a separating group of G such that A does not contain any inner vertex of the

W -framework, and ER(G) ∩ E(C) ∩ (E(A) ∪ [A, S]) = Ø. We apply similar

arguments as used in Case 1 to prove that the conclusion holds.

Here we give an example to show that in this case the lower bound is sharp.

See figure 5.3
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Example 5.2.3. Let H be a W -framework as in Definition 1.2.5, L a graph

such that V (L) = {a′, x′1, x′2, x′3, x′4}, E(L) = {a′x′1, a′x′2, a′x′3, a′x′4, x′1x′2, x′2x′3,
x′3x

′
4, x

′
4x
′
1, x

′
1x
′
3}.

Now we construct a graph G as follows: Let V (G) = V (L)∪V (H)−{y1, y2},
E(G) = E(L)∪E(H)−{y1y2, y3y4}+{x1x

′
1, x

′
2x3, y3x

′
3, y2x

′
4, x1x

′
3, x

′
1x3}. It can

be checked easily that G is a 4-connected graph. We have that (x′2x3, {x′1, x′3, x′4}),
(y3x

′
3, {x1, x3, y2}), (y2x

′
4, {x′1, x′2, x′3}), (x′1x1, {y2, x3, x

′
3}), (a′x′4, {x′1, x′3, x3}),

(a′x′2, {y2, x
′
1, x′3}) are separating pairs of G. Let C = x1x2x3x

′
2a
′x′4y2y3x

′
3x
′
1x1.

Obviously, C is a Hamilton cycle which contains two removable edges x′1x
′
3, y2y3.

                  x1                                          x2                                                              x3 

                              y2 

Removable edge 

Unremovable edge 

                                                     y3 

                         x1’ 

                                           x2’ 

                          x3’ 

                                x4’ 
                                        a’ 

Figure 5.3:

Case 4. H is a maximal l-bi-fan which is defined as in Definition 1.2.2.

Here we have that either |E(C) ∩ {ax2, ax3, · · · , axl+2}| ≤ 1 or |E(C) ∩
{bx2, bx3, · · · , bxl+2}| ≤ 1 holds. Without loss of generality, we may assume

|E(C)∩{ax2, ax3, · · · , axl+2}| ≤ 1. Next we distinguish the following two sub-

cases to complete the proof of Case4.

Subcase 4.1. {x1x2, x2x3, · · · , xl+2xl+3} ⊂ E(C).
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Let C = x1x2 · · ·xl+2xl+3 · · · vau · · ·x1}. We let P1 denote the path going

from a to x2 on C through which passes vertex u, and P2 going from xl+2 to a

on C through which passes vertex v. Then C1 = P1 +ax2 and C2 = P2 +axl+2

are two cycles which contain just one inner vertex of l-bi-fan and don’t pass

through any other subgraph belonging to <. By Lemma 5.2.2 we know that

C1 and C2 contain at least two removable edges respectively, so there are at

least two removable edges on C.

Subcase 4.2. For some i ∈ {2, · · · , l+2}, we have that either {axi, xixi+1, · · · ,
xl+2xl+3} ⊂ E(C) or {bxi, xixi+1, · · · , xl+2xl+3} ⊂ E(C) holds.

Without loss of generality, we may assume {axi, xixi+1, · · · , xl+2xl+3} ⊂
E(C). From |E(C) ∩ {ax2, · · · , axl+2}| ≤ 1, we deduce ({ax2, · · · , axi+2} −
{axi}) ∩ E(C) = Ø. Then it is easy to see that only i = 2 holds. Let

C = ax2x3 · · ·xl+2xl+3 · · ·ua. Let P denote the path going from xl+2 to a on

C and passes through vertex u. Then C1 = P + axl+2 is a cycle of G which

passes through just one inner vertex of l-bi-fan and doesn’t pass through any

other subgraph belonging to <. From Lemma 5.2.2 we know that C1 contains

at least two removable edges, and so P contains at least one removable edge.

Since ax2 ∈ E(C) − E(C1), therefore, there are at least two removable edges

on C.

Example 5.2.4. Here we give an example to show that in this case the lower

bound is sharp. See figure 5.4.

Let H be an l-bi-fan (l ≥ 2) as defined in Definition 1.2.2, L a graph such as

V (L) = {a′, x′1, x′2, x′3, x′4}, E(L) = {a′x′1, a′x′2, a′x′3, a′x′4, x′1x′2, x′2x′3, x′3x′4, x′4x′1,
x′1x

′
3}.

Now we construct a graph G as follows: First, we identify the vertex x1

with x′1, xl+3 with x′4, respectively. Then join the vertices a and x′2, b and

x′3, a and b. Obviously, G is a 4-connected graph. Similar arguments as used

in Example 5.2.2 can show that bx′3, ax′2, xl+2x
′
4, x2x

′
1, a

′x′4, a
′x′2 ∈ EN(G). Let
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C = ax′2a
′x′4xl+2xl+1 · · ·x2x

′
1x
′
3ba, then C is a Hamilton cycle through which

passes two removable edges x′1x
′
3 and ab.

                          x2 

                                     x3 

                                                      xl+2 

                                              xl+1 

                                      a                                            b 

Unremovable edge 

                        Removable edges 

                         x1’ 

                         x2’ 

                                        a’ 

                              x3’ 

                                                      x4’ 

Figure 5.4:

Noticing that in this conclusion, we do not discuss the case that C pass

through only one l-belt or l-co-belt. In fact, even if for a Hamilton cycle C

through which passes only one maximal l-belt or maximal l-co-belt, Theorem

3.2.2 can not be improved. We can give the examples to show that. See figure

5.5.

Example 5.2.5. (1.) Let H be a maximal l-belt as in Definition 1.2.3, and L

a graph such that V (L) = {a′, x′1, x′2, x′3, x′4}, E(L) = {a′x′1, a′x′2, a′x′3, a′x′4, x′1x′2,
x′2x

′
3, x

′
3x
′
4, x

′
4x
′
1, x

′
1x
′
3}. Now we construct a graph G as follows: First , we iden-

tify the vertex x1 with x′1, yl+2 with x′3, respectively. Then we connect vertices

y1 and x′2, xl+2 and x′4, y1 and xl+2, respectively. We denote the resulting

graph by G, it can be easily checked that G is a 4-connected graph. Similar

arguments can lead to the fact that x′1x2, x
′
2y1, x

′
3yl+1, x

′
4xl+2 ∈ EN(G). Let

C = x′1x2x3 · · ·xl+2x
′
4a
′x′2y1y2 · · · yl+1x

′
3x
′
1, then C is a Hamilton cycle which

contains only one removable edge x′1x
′
3.
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(2.) Let H be a maximal l-co-belt as in Definition 1.2.4, and let L be de-

fined as in (1.), Now we construct a graph G as follows: First , we identify

the vertex xl+3 with x′4, x1 with x′1, respectively. Then connect vertices y1

and x′2, y1 and yl+2, x′3 and yl+2, respectively. It is easy to see that G is a

4-connected graph. Similar arguments can be used as in (1.) to show that

C = x′1x2x3 · · ·xl+2x
′
4a
′x′2y1y2 · · · yl+2x

′
3x
′
1 is a Hamilton cycle which contains

only one removable edge x′1x
′
3.

                                 x1’                                                   x4’ 

                                         x3’                                  x2’ 

                          x2                    x3                  

                                            a’ 

                                                      xl+1                                                            xl+2 

                    y1                                  y2                                                          yl+1                                                             yl 

Unremovable edge 

                        Removable edges 

Figure 5.5:

Theorem 5.2.3. Let G be a 4-connected Hamilton graph with |G| ≥ 7, and

let C be a Hamilton cycle of G. Then the following conclusions hold: If C pass

through just two subgraphs belonging to < excluding maximal l-belt or l-co-belt,

then there is at least one removable edge on C.

Proof. By contradiction. Assume that C passes through just two sub-

graphs (excluding maximal l-belt or l-co-belt) belonging to < and does not

pass through any maximal l-belt or l-co-belt, and there is no removable edge

on cycle C. Then we will distinguish the following cases to complete the proof.

Case 1. C passes through any two subgraphs as following: W ′-framework,
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W -framework and helm.

Then it is easy to see that the conclusion holds.

Case 2. G contains just two maximal l-bi-fan.

Let H1 = (a, b; x1, x2, · · · , xl+3} and H2 = {a′, b′; y1, y2, · · · , yt+3} be just

two maximal l-bi-fan and t-bi-fan which C passes through. Assume that

E(C)∩ER(G) = Ø. Then we can get that E(C)∩{ax2, ax3, · · · , axl+2, bx2, bx3,

· · · , bxl+2, a
′y2, a

′y3, · · · , a′yt+2, b
′y2, · · · , b′yt+2} = Ø. Consequence we have

{x1x2, x2x3, · · · , xl+2xl+3, y1y2, · · · , yt+2yt+3} ⊂ E(C) holds. Without loss of

generality, we may assume C = x1x2 · · ·xl+3 · · · y1y2 · · · yt+2yt+3 · · ·x1. Let P1

denote the path going from xl+1 to y1 on cycle C and does not pass through y2,

let P2 denote the path going from yt+1 to x1 on C and does not pass through

x2. Since d(a) ≥ 5, d(b) ≥ 5, d(a′) ≥ 5, d(b′) ≥ 5, vertices a, b, a′, b are not

inner vertices of l-bi-fan. So, we have that a ∈ P1 or a ∈ P2. Without loss of

generality, we may assume a ∈ P2. Let P3 denote the path from a to x2 on

C and passes through x1. Then P3 + ax2 is a cycle which does pass through

neither H1 nor H2. From Lemma 5.2.2 we know that P3 + ax2 contains at

least two removable edges, and so P3 contains at least one removable edges.

Therefore, theorem holds.

The following example shows that in this case the lower bound is sharp.

See figure 5.6.

Example 5.2.6. Let L be a graph such that V (L) = {a1, y1, y2, y3, y4}, E(L) =

{a1y1, a1y2, a1y3, a1y4, y1y2, y2y3, y3y4, y4y1, y1y3}, let H and H ′ be two bi-fans

defined as in Definition 1.2.2 with V (H) = {a, b; x1, x2, · · · , xl+2, xl+3}, V (H ′) =

{a′, b′; x′1, x′2, · · · , x′t+2, x
′
t+3}. Now we construct the graph G as follows:

First: We delete the vertices x1, xl+3, x
′
1, x

′
t+3 from H and H ′ respectively.

Second: Identify the vertex a with a′, and join the vertices a and y1, a and

y2, x2 and b′, b and x′2, xl+2 and x′t+2, b′ and y3, b and y4, respectively. It

can be easily checked that G is a 4-connected graph, and (bx′2, {a, b′, x′t+2}),
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(b′x2, {a, b, xl+2}), (xl+2x
′
t+2, {a, b, x2}), (a1y4, {a, y1, y3}), (a1y2, {y1, y3, b}), (ay1,

{y2, y3, y4}), (ay2, {y1, y3, y4}) are separating pairs of G. Let C = ay1y3b
′x2x3 · · ·

xl+2x
′
t+2x

′
t+1 · · ·x′2by4a1y2a, it can be easily checked that C is a Hamilton cycle

with only one removable edge y1y3. See figure 5.5.

           x2 

                    x3                                        xl+1 

                                        xl+2                                                x2’ 
                                        x3’ 

                                                               xt+1’ 
                                                                      xt+2’ 

                                           a1 

                                   y1 

                                                  

                               y4                                                   y3 

                                b                                           a (a’)                                                b’ 

                                                            y2 

Unremovable edge 

                        Removable edges 

Figure 5.6:

This completes the proof.¤



Chapter 6

The Number of Removable
Edges in 4-Connected Graphs

In this chapter we prove that every 4-connected graph of order at least six

(excluding the 2-cyclic graph of order six) has at least (4|G|+16)/7 removable

edges. We also give a structural characterization of 4-connected graphs for

which the lower bound is sharp.

6.1 Some Subgraphs and their Properties

For convenience, some special notations are introduced.

By L1 we denote the maximal 1-belt such that V (L1) = {x1, x2, x3, y1, y2, y3}
and E(L1) = {x1x2, x2x3, y1y2, y2y3, y1x2, x2y2, y2x3}. We say that x2x3, y1y2

are inner edges of L1.

By L2 we denote the maximal 2-belt such that V (L2) = {x1, x2, x3, x4, y1, y2,

y3, y4} and E(L2) = {x1x2, x2x3, x3x4, y1y2, y2y3, y3y4, y1x2, x2y2, y2x3, x3y3, y3x4}.
We say that x2x3, x3x4, y1y2, y2y3 are inner edges of L2.

By L′1 we denote the maximal 1-co-belt such that V (L′1) = {x1, x2, x3, x4, y1,

y2, y3} and E(L′1) = {x1x2, x2x3, x3x4, y1y2, y2y3, y1x2, x2y2, y2x3, x3y3}. We

say that x2x3, y1y2, y2y3 are inner edges of L′1.

82
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By L′2 we denote the maximal 2-co-belt such that V (L′2) = {x1, x2, x3, x4, x5,

y1, y2, y3, y4} and E(L′2) = {x1x2, x2x3, x3x4, x4x5, y1y2, y2y3, y3y4, y1x2, x2y2,

y2x3, x3y3, y3x4, x4y4}. We say that x2x3, x3x4, y1y2, y2y3, y3y4 are inner edges

of L′2.

By F we denote the maximal 1-bi-fan such that V (F ) = {a, b, x1, x2, x3, x4}
and E(F ) = {x1x2, x2x3, x3x4, ax2, ax3, bx2, bx3}. We say that x2x3 is an inner

edge of F .

By W we denote the W -framework such that V (W ) = {x1, x2, x3, y1, y2, y3,

y4} and E(W ) = {x1x2, x2x3, y1y2, y2y3, y3y4, x1y2, x2y2, x2y3, x3y3}. We say

that x1x2, x2x3 are inner edges of W .

By W ′ we denote the W ′-framework such that V (W ′) = {x1, x2, x3, y1, y2, y3,

y4} and E(W ′) = {x1x2, x2x3, x1x3, y1y2, y2y3, y3y4, x1y2, x2y2, x2y3, x3y3}. We

say that x1x2, x2x3, x2y2 are inner edges of W ′.

By H we denote the helm such that V (H) = {a, x1, x2, x3, x4, v1, v2, v3, v4}
and E(H) = {ax1, ax2, ax3, ax4, x1x2, x2x3, x3x4, x4x1, x1v1, x2v2, x3v3, x4v4}.
We say that the edges axi for i = 1, 2, 3, 4 are inner edges of H.

Let Υ denote the set of special graphs defined above, so Υ = {L1, L2, L
′
1, L

′
2,

F,W,W ′, H}. Then we first prove the following useful observation on the mem-

bers of set of Υ.

Lemma 6.1.1. There is no common inner edge between any two different

subgraphs of G in Υ.

Proof. By contradiction. Suppose that there are two different subgraphs

K and K ′ of G in Υ that have a common inner edge. Then we discuss the

following cases.

(1.) K is a maximal 1-belt L1. Then x2x3 and y1y2 are the inner edges of K.
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Without loss of generality, we may assume that x2x3 is also an inner edge of

K ′. We discuss the following subcases for K ′.

(1.1.) K ′ is a maximal 1-belt. Let V (K ′) = {u1, u2, u3, v1, v2, v3} and

E(K ′) = {u1u2, u2u3, v1v2, v2v3, v1u2, u2v2, v2u3}, and let the inner edges of

K ′ be u2u3, v1v2. If x2x3 = u2u3, then we have either x2 = u2, x3 = u3 or

x2 = u3, x3 = u2. If x2 = u2, x3 = u3, then K = L1 = K ′. If x2 = u3, x3 = u2,

then we have either d(x3) = 4 and x3y3 ∈ E(G) or we have d(y1) = 4 and

x1y1 ∈ E(G). However, this contradicts that K is a maximal 1-belt.

(1.2.) Similar arguments show that K ′ is not a maximal 1-co-belt, a maximal

2-belt or a maximal 2-co-belt.

(1.3.) K ′ is a maximal 1-bi-fan. Then we have that either x3y1 ∈ E(G)

or x1x3 ∈ E(G). If x1x3 ∈ E(G), then from the definition of the maximal

1-bi-fan, we have that x1x2 ∈ ER(G), which contradicts the definition of the

maximal 1-belt K. If x3y1 ∈ E(G), since y1y2 ∈ EN(G), we consider the cor-

responding separating group (y1y2, S; A,B) such that y1 ∈ A, y2 ∈ B. Since

y1y2x2y1, y1y2x3y1 are 3-cycles of G, we have that x2x3 ∈ E([S]). By Theorem

2.1.4 we have that x2x3 ∈ ER(G), which contradicts the definition of the max-

imal 1-belt K. Therefore, any inner edge of a maximal 1-belt can not be an

inner edge of any maximal 1-bi-fan, and vice versa.

(1.4.) K ′ is a W -framework or a W ′-framework. Then we have that y1y2 ∈
ER(G), which contradicts the definition of the maximal 1-belt K. Hence, any

inner edge of a maximal 1-belt can not be an inner edge of any W -framework

or W ′-framework, and vice versa.

(1.5.) K ′ is a helm. Then either x2 or x3 is incident with four unremovable

edges in G. Obviously, this is impossible since x2x3 is an inner edge of the

maximal 1-belt K. Therefore, any inner edge of a maximal 1-belt can not be

an inner edge of any helm, and vice versa.
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(2.) K is a maximal 2-belt L2. Without loss of generality, we may assume

that x2x3 is a common inner edge of K and K ′. We distinguish the following

subcases for K ′.

(2.1.) K ′ is also a maximal 2-belt. Let V (K ′) = {u1, u2, u3, u4, v1, v2, v3, v4}
and E(K ′) = {u1u2, u2u3, u3u4, v1v2, v2v3, v3v4, v1u2, u2v2, v2u3, u3v3, v3u4}, and

let u2u3, u3u4, v1v2, v2v3 be the inner edges of K ′. If x2x3 = u2u3, then one of

the following holds: (i) K = L2 = K ′; (ii) d(y1) = 4 and x1y1 ∈ E(G), which

contradicts that K is a maximal 2-belt. If x2x3 = v1v2, it is easy to see that

u1v1 ∈ E(G) and d(v1) = 4, which contradicts that K ′ is a maximal 2-belt.

By symmetry, for the other cases, we may apply similar arguments to show

that the conclusion holds.

(2.2.) Since a maximal 1-co-belt is a subgraph of a maximal 2-belt, it is easy

to see that x2x3 or y1y2 is not an inner edge of a maximal 1-co-belt. Otherwise,

it contradicts the definition of the maximal 1-co-belt. Similarly, a maximal 2-

belt and a maximal 2-co-belt do not have any common inner edge.

(2.3.) Obviously, it is impossible that an inner edge of a maximal 2-belt

is an inner edge of the following subgraphs: maximal 1-bi-fan, W -framework,

W ′-framework or helm. And vice versa.

(3.) K is a maximal 2-co-belt. It is easy to see that an argument similar to

that used in (2.) can be applied to deduce contradictions.

(4.) K is a maximal 1-bi-fan. If K ′ is also a maximal 1-bi-fan F ′, it is

easy to see that this is true only if F = F ′ holds. Obviously, it is impossible

that the inner edge x2x3 of H is an inner edge of the following subgraphs:

W -framework, W ′-framework or helm.

(5.) K is a W -framework, or a W ′-framework, or a helm. Obviously, no

matter whatever K ′ is, we always can deduce contradictions. The details are

omitted. ¤
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6.2 Some Preliminary Results

In order to obtain a sharp lower bound on the number of removable edges in

a 4-connected graph, we first prove the following preliminary results.

Theorem 6.2.1. Let G be a 4-connected graph and F a maximal l-bi-fan of

G with l ≥ 2. Then there exists an edge e′ in F such that e′ ∈ ER(G) and

eR(G) ≥ eR(Gª e′) + 1.

Proof. Let F be defined as in Definition 1.2.2. First, we claim that d(a) ≥
5, d(b) ≥ 5. Otherwise, we may assume that d(a) = 4 and let ΓG(a) =

{x2, x3, x4, v}. We claim that v 6= b. Otherwise, {x2, x4, b} is a 3-vertex-cut of

G, a contradiction. Let A = {a, x3}, S = {x2, x4, v}, e = bx3, B = G−e−A−S.

Then (bx3, S; A,B) is a separating group of G, and therefore bx3 ∈ EN(G),

which contradicts that F is an l-bi-fan.

Let e′ = ax3, H = Gª e′. Next we show that for any edge e 6= x2x4 in H,

if e ∈ ER(H), then e ∈ ER(G).

By contradiction. Assume that there exists an edge e ∈ ER(H), but

e ∈ EN(G). Let e = xy. Since xy ∈ EN(G), by Theorem 2.1.1 we can consider

the corresponding separating group (e, T ; C, D) such that x ∈ C, y ∈ D. We

distinguish the following cases to prove the conclusion.

Case 1. a, x3 ∈ T .

Since d(x3) = 4 and ax3 ∈ E(G), we have that |ΓG(x3) ∩ C| = 1 or

|ΓG(x3) ∩D| = 1. Without loss of generality, we may assume that |ΓG(x3) ∩
C| = 1. Let ΓG(x3) ∩ C = {v1}, T = {a, x3, w}. If |C| ≥ 3, let T ′ = {a, v1, w},
C ′ = C − {v1} and D′ = H − xy − T ′ − C ′. We claim that v1 6= x. Oth-

erwise, we have that {a, w, v1} is a 3-vertex-cut of G, which contradicts that

G is 4-connected. It is easy to see that (e, T ′; C ′, D′) is a separating group of
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H, and therefore e ∈ EN(H), a contradiction. If |C| = 2, then v1x ∈ E(G).

Since d(b) ≥ 5 and v1 6= b, we have v1 ∈ {x2, x4}. If v1 = x2, then x = x1.

Since ΓG(x2) = {b, x1, x3, a}, we have that w = b and ΓG(x1) = {a, b, x2, y}.
Obviously, {ax1, bx1} ⊂ ER(G) and x1y ∈ EN(G), which contradicts the

definition of a maximal l-bi-fan of G. If v1 = x4, then w = b, and there-

fore ΓG(x) = {a, b, x4, y}, and so x = x5. Let C ′ = {x4, x}, e = xy, T ′ =

{a, b, x2}, D′ = H − e − C ′ − T ′. Then (e, T ′; C ′, D′) is a separating group of

H, and so e ∈ EN(H), which contradicts that e ∈ ER(H).

Case 2. a ∈ T, x3 ∈ C.

So, ΓG(x3) = {a, b, x2, x4}. If |C| ≥ 3, then it is easy to see that (e, T ; C −
{x3}, D) is a separating group of H, and hence e ∈ EN(H), which contra-

dicts that e ∈ ER(H). Therefore, |C| = 2, and so x ∈ ΓG(x3). If x = b,

then T = {a, x2, x4}, ΓG(b) = {a, x2, x3, x4, y}, ΓG(x2) ∩ D = {x1}. Since

x1x4 6∈ E(G) and x1 6= y, we have that |D| ≥ 3. Let T ′ = {a, x1, x4}, D′ =

D−{x1}, C ′ = H−xy−T ′−D′. Then (xy, T ′; C ′, D′) is a separating group of H,

and so e ∈ EN(H), a contradiction. If x = x2, then y = x1. Obviously, if we let

e = x2x1, C
′ = {x2, x4}, T ′ = {a, b, x5}, D′ = H−e−C ′−T ′, then (e, T ′; C ′, D′)

is a separating group of H, and so x2x1 ∈ EN(H), a contradiction. If x = x4,

then y = x5. Let C ′ = {x2, x4}, T ′ = {a, b, x1}, D′ = H − x4x5 − T ′ − C ′.

Then (x4x5, T
′; C ′, D′) is a separating group of H, and so x4x5 ∈ EN(H), a

contradiction.

Case 3. a ∈ C, x3 ∈ T .

If |C| = 2, then a = x, and so C − {a} = {x2} or C − {a} = {x4}. If

C − {a} = {x2}, then b ∈ T . Since x3x4 ∈ EN(G), by Theorem 2.1.4 we have

x4 /∈ T . If x4 ∈ D−{y}, then ax4 6∈ E(G), a contradiction. If C−{a} = {x4},
by similar arguments can leads to a contradiction, and therefore |C| ≥ 3. Since

a ∈ C, we have that x2, x4 ∈ C ∪ T . Noticing that ΓG(x3) ∩D 6= Ø, we have

b ∈ D, and so x2, x4 ∈ T . But then {x2, x4, x} is a 3-vertex-cut of H, a con-

tradiction.
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Case 4. a, x3 ∈ C.

Obviously, |C| ≥ 3, and similar arguments lead to a contradiction.

Based on the above arguments, we know that if e ∈ ER(H) and e 6= x2x4,

then e ∈ ER(G). Noticing that ax3, bx3 ∈ ER(G), but ax3, bx3 /∈ E(H), we

prove that eR(G) ≥ eR(Gª e) + 1.¤

Theorem 6.2.2. Let G be a 4-connected graph and L a maximal l-belt of

G with l ≥ 3. Then there exists an edge e′ in E(G) such that eR(G) ≥
eR(Gª e′) + 2.

Proof. Let L be defined as in Definition 1.2.3. Consider e′ = x3y3 and let H =

Gª e′. We delete three removable edges y2x3, y3x3, y3x4 from G and add three

edges y2x4, x2x4, y2y4 to get H. Let A′ = {y2, x2}, e1 = y2y4, S
′ = {x1, y1, x4}

and B′ = G − e1 − S ′ − A′. Then (e1, S
′; A′, B′) is a separating group of H,

and hence y2y4 ∈ EN(H). By similar arguments we can show x2x4 ∈ EN(H).

It remains to show that for any e ∈ E(H) and e 6= y2x4, if e ∈ ER(H), then

e ∈ ER(G). We prove this by contradiction. Assume that there exists an edge

e ∈ ER(H), but e ∈ EN(G). Let e = xy. By Theorem 2.1.1 we consider the

corresponding separating group (e, S; A,B) such that x ∈ A, y ∈ B. Next we

distinguish the following cases to complete the proof.

Case 1. x3, y3 ∈ S.

Let S = {x3, y3, w}, w ∈ G and U = {x2, x4, y2, y4}. Noticing that

ΓG(x3) = {x2, x4, y2, y3} and ΓG(y3) = {x3, x4, y2, y4}, we claim that |A∩U | =
2 = |B ∩ U |. Otherwise, we may assume that |A ∩ U | = 1. Let A ∩ U = {v1},
then {x, v1, w} is a 3-vertex-cut of G, which contradicts that G is 4-connected.

If |A| = 3, since l ≥ 3, obviously we have that |G| ≥ 10, and so |B| ≥ 4.

Let B ∩ U = {v1, v2}. If we let S1 = {v1, v2, w}, B1 = B − {v1, v2}, A1 =

H − e − S1 − B1, then (e, S1; A1, B1) is a separating group of H, and so

e ∈ EN(H), a contradiction. If |A| ≥ 4, let A∩U = {u1, u2}, S1 = {u1, u2, w},
A1 = A− {u1, u2}, B1 = H − e− S1 −A1. Then (e, S1; A1, B1) is a separating
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group of H, and so e ∈ EN(H), which contradicts the assumption.

Case 2. x3 ∈ A, y3 ∈ S.

Subcase 2.1. |A| = 2.

Then x ∈ ΓG(x3). If x = x2, then S = {y2, y3, x4}. Since x2y3, x2x4 /∈
E(G), we have that d(x2) < 4, a contradiction. If x = x4, similar argu-

ments leads to d(x4) < 4, a contradiction. If x = y2. Then y = y1. Let

A1 = {y2, x4}, e = y1y2, S1 = {x2, x5, y4}, B1 = H − e − A1 − S1, then

(e, S1; A1, B1) is a separating group of H, and so e ∈ EN(H), which con-

tradicts the assumption.

Subcase 2.2. |A| ≥ 3.

Since x3 ∈ A, it is easy to see that B ∩ ΓG(y3) = {y4}. If |B| ≥ 3,

let B1 = B − {y4}, S1 = {y4} ∪ S − {y3}, A1 = H − e − S1 − B1. Then

(e, S1; A1, B1) is a separating group of H, and so e ∈ EN(H). If |B| = 2,

since ΓG(y4) = {y3, y5, x4, x5}, we have y ∈ {x4, x5, y5}. If y = x4, then this

is true only if x = x3 holds, a contradiction. If y = x5, since y3x5 /∈ E(G),

we have d(x5) = 4 and S = {y3, y5, x4}. Let A1 = A− {y2}, S1 = {y2, y5, x4},
B1 = H−e−S1−A1. Then (e, S1; A1, B1) is a separating group of H, and hence

e ∈ EN(H). If y = y5, then S = {x4, x5, y3}. Note that y3y5, x4y5 6∈ E(G). So,

d(y5) < 4, a contradiction.

To sum up, from the above arguments we know that in Case 2 we always

have e ∈ EN(H).

Case 3. x3 ∈ S, y3 ∈ A.

By symmetry, arguments analogous to that used in Case 2 can lead to that

e ∈ EN(H).

Case 4. x3, y3 ∈ A.
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If |A| ≥ 4. Obviously, e ∈ EN(H), which contradicts the assumption. So,

|A| ≤ 3. Obviously, x3 6= x, y3 6= x. Therefore, we have that |A| = 3. Since A

is a connected subgraph of G, we may assume that x3x ∈ E(G). If x = x4, then

xy = x4x5. Let S1 = {y1, y4, x2}, A1 = {y2, x4}, B1 = H − e − S1 − A1, then

(e, S1; A1, B1) is a separating group of H, and so e ∈ EN(H). If x = y2, then

y = y1. Let e = y2y1, A1 = {y2, x4}, S1 = {x2, x5, y4}, B1 = H − e − S1 − A1,

then (e, S1; A1, B1) is a separating group of H, and so e ∈ EN(H). If x = x2,

then S = {y2, y4, x4}. It is easy to see that d(x2) < 4, a contradiction.

Based on the above arguments, we have that ER(H) ⊆ ER(G) except

for the edge y2x4. Noticing that y2x3, x3y3, x4y3 ∈ ER(G), we prove that

eR(G) ≥ eR(Gª e) + 2. ¤

A 4-connected graph G is said to have property (?) if there does not exist

any edge xy ∈ ER(G) such that both d(x) ≥ 5 and d(y) ≥ 5.

Theorem 6.2.3. Let G be a 4-connected graph with property (?), |G| ≥ 8,

and C ′ be a cycle of G. If C ′ does not contain any removable edges of G, then

G has one of the following structures as its subgraph: l-belt, l-bi-fan (l ≥ 1),

W -framework, W ′-framework or helm, such that it intersects C ′ at of its some

inner edge(s).

Proof. For every edge e = xy in C ′, by Theorem 2.1.1 there exists a sepa-

rating group (e, S; A,B) of G, in which we always choose A and B such that

min{|A|, |B|} is as small as possible. Without loss of generality, we may as-

sume |A| ≤ |B| such that y ∈ A, x ∈ B. Then we consider f = yz ∈ E(C ′), z 6=
x, and its corresponding separating group (f, T ; C, D) such that y ∈ C, z ∈ D

in G. Let

X1 = (S ∩ C) ∪ (S ∩ T ) ∪ (A ∩ T )

X2 = (A ∩ T ) ∪ (S ∩ T ) ∪ (S ∩D)

X3 = (S ∩D) ∪ (S ∩ T ) ∪ (B ∩ T )
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X4 = (B ∩ T ) ∪ (S ∩ T ) ∪ (S ∩ C)

It is easy to see that the edge e = xy is the unique edge connecting A and B,

and the edge f = yz is the unique edge connecting C and D. So x 6∈ D, z 6∈ B.

Since X1 is a vertex-cut of G−yx−yz and G is 4-connected, we have |X1| ≥ 2.

Next we will distinguish the following cases to complete the proof.

Case 1. x ∈ B ∩ C, z ∈ D ∩ S.

By Theorem 2.1.2 we have |A| = 2. Since A∩C 6= Ø and A is a connected

subgraph of G, we have A ∩ D = Ø, and so |A ∩ T | ≤ 1. If |A ∩ T | = 0,

then |A ∩ C| = 2. Since S ∩ D 6= Ø, by noticing that |S| = 3, we get

|X1| = |(S ∩ C) ∪ (S ∩ T )| ≤ 2, and hence X1 ∪ {y} is a vertex-cut of G.

However, |X1 ∪ {y}| < 4, which contradicts that G is 4-connected. Therefore,

|A∩T | = 1, A∩C = {y}. Since X4 is a vertex-cut of G−xy, we have |X4| ≥ 3,

and hence |S ∩ C| ≥ |A ∩ T | = 1, |B ∩ T | ≥ |S ∩ D| ≥ 1. So S ∩ T = Ø or

|S∩T | = 1. We claim that S∩T = Ø. Otherwise, if |S∩T | = 1, then |X3| = 3,

and so B ∩D = Ø. Since A ∩D = Ø, it is easy to see that D = D ∩ S = {z},
which contradicts |D| ≥ 2, and thus S∩T = Ø. Noticing that |T | = 3, we have

|B∩T | = 2. If |S∩C| = 2, then |S∩D| = 1. By similar arguments we get that

D = {z}, which contradicts |D| ≥ 2. Therefore, |C∩S| = 1, and so |D∩S| = 2.

Let A ∩ T = {a}, S ∩ C = {b}, S ∩ D = {z, c}. It is easy to see that

ΓG(y) = {x, z, a, b}, ΓG(a) = {y, z, b, c}. Next we show that ay, az, by ∈ ER(G)

by contradiction.

(1.) Assume that ay ∈ EN(G) and we consider a separating group (ay, U ; A′,

B′) such that a ∈ A′, y ∈ B′. Since ayza, abya are 3-cycles of G, we have

that z, b ∈ U . Since yz ∈ EN(G), by Theorem 2.1.2 we get |B′| = 2. Let

B′ = {v1, y}, then byv1b is a 3-cycle of G and v1 6= a. It is easy to see that

this is true only if v1 = x holds. However, xz 6∈ E(G), and so d(x) < 4, a
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contradiction.

(2.) Assume that az ∈ EN(G) and we consider its separating group (az, U ; A′,

B′) such that a ∈ A′, z ∈ B′ in G. Since ayza is a 3-cycle of G, we have

y ∈ U . Since yz ∈ EN(G), from Theorem 2.1.2 we have that |B′| = 2. Let

B′ = {z, v1}, then yzv1y is a 3-cycle of G and v1 6= a, which is impossible.

Therefore, az ∈ ER(G).

(3.) Assume that by ∈ EN(G). First, let A′ = C∩(B∪S), S ′ = {y}∪(B∩T ),

B′ = G − ab − A′ − S ′, then (ab, S ′; A′, B′) is a separating group of G, and

hence ab ∈ EN(G). Since by ∈ EN(G), we consider its separating group

(by, U ; A′, B′) such that b ∈ A′, y ∈ B′. Since abya is a 3-cycle of G, we have

that a ∈ S ′. Since ab ∈ EN(G), by Theorem 2.1.2 we have that |A′| = 2. Let

A′ = {b, v1}. Then abv1a is a 3-cycle of G and v1 6= y, which is impossible in

G, and therefore, we have by ∈ ER(G).

Let A′ = {a, y}, S ′ = {b, z, x}, B′ = G− ac− S ′ −A′. Then (ac, S ′; A′, B′)

is a separating group of G, and so ac ∈ EN(G). It is easy to see that

(ab,B ∩ T ∪ {y}) is a separating pair of G, so ab ∈ EN(G).

Obviously, yz is an inner edge of an l-belt or l-co-belt with l ≥ 1, and so

the conclusion holds.

Case 2. z ∈ S ∩D, x ∈ B ∩ T .

By Theorem 2.1.2 we have |A| = |C| = 2. Since A and C are two con-

nected subgraphs of G, we have A ∩ D = Ø = B ∩ C. First, we claim that

|A ∩ C| = 1. Otherwise, |A ∩ C| = 2, and so A ∩ T = Ø = S ∩ C. Since

B ∩ T 6= Ø 6= S ∩D, we have |X1| = |S ∩ T | ≤ 2, and so X1 ∪ {y} is a vertex-

cut of G. However, |X1 ∪ {y}| < 4, which contradicts that G is 4-connected.

Therefore, |A∩ T | = 1, |S ∩C| = 1. Second, we claim that S ∩ T = Ø. Other-

wise, |S∩T | = 1. Then |X3| = 3, and so B∩D = Ø. Hence, D = D∩S = {z},
which contradicts |D| ≥ 2. Therefore, we have |B ∩ T | = |S ∩D| = 2.
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Let A ∩ T = {a}, S ∩ C = {b}, D ∩ S = {z, v}, B ∩ T = {x, u}. Then

ΓG(y) = {x, z, a, b}, ΓG(a) = {x, z, b, v}, ΓG(b) = {x, y, a, u}.

Next we show az ∈ ER(G). By contradiction, assume that az ∈ EN(G)

and we consider the corresponding separating group (az, U ; A′, B′) such that

a ∈ A′, z ∈ B′. Since azya is a 3-cycle of G, we have y ∈ U . Since yz ∈ EN(G),

by Theorem 2.1.2 we have |B′| = 2. Let B′ = {z, v1}. Then yzv1y is a 3-cycle

of G and v1 6= a, and so this is true if only if v1 = x holds. Since bx ∈ E(G),

we have b ∈ U . Then (U − {y}) ∪ {a} is a 3-vertex-cut of G, a contradiction.

Therefore, az ∈ ER(G) holds. By symmetry, we obtain bx ∈ ER(G). Let

A′ = {a, y}, S ′ = {x, z, b}, B′ = G − av − S ′ − A′. Then (av, S ′; A′, B′) is a

separating group of G, and so av ∈ EN(G). By similar arguments we can lead

to bu ∈ EN(G).

Now we discuss the following subcases.

Subcase 2.1. xz /∈ E(G).

First we show that ay, by ∈ ER(G). By contradiction, we assume that

ay ∈ EN(G) and consider its separating group (ay, U ; A′, B′) such that a ∈
A′, y ∈ B′. Since ayza is a 3-cycle of G, we have z ∈ U . Since yz ∈ EN(G), by

Theorem 2.1.2 we have |B′| = 2. Let B′ = {y, v1}, then yzv1y is a 3-cycle of G.

Obviously, v1 6= a. Note that xz /∈ E(G), and so v1 6= x, which is impossible

in G. Therefore, we have ay ∈ ER(G). By symmetry, we have by ∈ ER(G).

It is easy to see that if ab ∈ EN(G), then G contains an l-belt or an l-co-belt

with l ≥ 1 such that yz is its an inner edge. If ab ∈ ER(G), then G contains

a W -framework such that yz is its an inner edge. Therefore, the conclusion

holds.

Subcase 2.2. xz ∈ E(G).

Since xy, yz ∈ EN(G), by Corollary 2.1.3 we have xz ∈ ER(G). Since G

has property (?), we have either d(x) = 4 or d(z) = 4.
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Subcase 2.2.1. d(x) = 4, d(z) ≥ 5.

Let ΓG(x) = {y, z, b, w}. Since |G| ≥ 8, we have B ∩ D 6= Ø, and so

w ∈ B ∩ D. Let A′ = {x, y}, U = {w, z, b}, B′ = G − ay − U − A′. Then

(ay, U ; A′, B′) is a separating group of G, and so ay ∈ EN(G). We claim

that ab ∈ ER(G). Otherwise, ab ∈ EN(G). Then we consider a separating

group (ay, T1; C1, D1) of G such that a ∈ C1, y ∈ D1. Obviously, z, b ∈ T1.

Since ab, yz ∈ EN(G), by Theorem 2.1.2 we have |C1| = |D1| = 2, which

contradicts |G| ≥ 8, and so ab ∈ ER(G). We claim that by ∈ ER(G). Oth-

erwise, by ∈ EN(G), we consider its separating group (by, T1; C1, D1) such

that b ∈ C1, y ∈ D1. Since byxb is a 3-cycle of G, we have x ∈ T1. Since

xy ∈ EN(G), by Theorem 2.1.2 we have |D1| = 2. Let D1 = {y, v1}, then

yxv1y is a 3-cycle of G, and hence this is true only if v1 = z holds. However,

d(v1) = 4, which contradicts d(z) ≥ 5. Therefore, by ∈ ER(G). Obviously,

we have that xy, yz are inner edges of a W ′-framework in G. The conclusion

holds.

Subcase 2.2.2. d(x) ≥ 5, d(z) = 4.

By symmetry, by arguments similar to that used in Subcase 2.2.1 we can

get that the conclusion holds.

Subcase 2.2.3. d(x) = d(z) = 4.

Let ΓG(x) = {y, z, b, w}. Let A′ = {x, y}, U = {w, z, b}, B′ = G − ay −
U − A′, then (ay, U ; A′, B′) is a separating group of G, and so ay ∈ EN(G).

By symmetry, we have by ∈ EN(G). Since xy, yz ∈ EN(G), from Corollary

2.1.3 we have that ab, bx, xz, za ∈ ER(G). Obviously, G contains a helm as a

subgraph such that xy, yz are its inner edges. Therefore, the conclusion holds.

Case 3. z ∈ A ∩D, x ∈ B ∩ T .

By Theorem 2.1.2 we have |C| = 2. Since |A| ≤ |C|, we have |A| = 2, and

hence A = {y, z}, A ∩ T = Ø. Since A ∩D 6= Ø, we have |X2| ≥ 3. Noticing
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that |S| = 3, we have |A ∩ T | ≥ |S ∩ C|, and so |S ∩ C| = 0. Since C is a

connected subgraph of G and |C| = 2. Since A = {y, z}, we have A∩C = {y}.
Therefore, C ∩ S 6= Ø, a contradiction. So, Case 3 does not occur.

Case 4. z ∈ A ∩D, x ∈ B ∩ C.

So, A ∩ D 6= Ø 6= B ∩ C, and therefore |X2| ≥ 3, |X4| ≥ 3. Since

|X2| + |X4| = |S| + |T | = 6, we have |X2| = |X4| = 3, and so |A ∩ T | =

|S ∩ C|, |B ∩ T | = |S ∩ D|. First, we claim that A ∩ D = {z}. Otherwise,

|A ∩ D| ≥ 2. Let U ′ = X2, A
′ = A ∩ D,B′ = G − yz − U ′ − A′. Then

(yz, U ′; A′, B′) is a separating group of G, and yz ∈ E(C ′), |A′| < |A|, which

contradicts that |A| is as small as possible. Therefore, A ∩D = {z}. Since D

is a connected subgraph of G and |D| ≥ 2, we have D ∩ S 6= Ø 6= B ∩ T , and

so |S ∩ T | ≤ 2. If |S ∩ T | = 1, we claim that S ∩ C 6= Ø 6= A ∩ T . Otherwise,

|X1| = 1. Obviously, |A ∩ C| ≥ 2, and so {y} ∪ (S ∩ T ) is a 2-vertex-cut of

G, a contradiction. Therefore, |S ∩ C| = |A ∩ T | = 1, |D ∩ S| = |B ∩ T | = 1,

and hence |X3| = 3. Then we have that B ∩ D = Ø and |D| = 2. However,

|A| ≥ 3. Then |D| < |A|, which contradicts that |A| is as small as possible.

Therefore, |S ∩ T | = 0 or |S ∩ T | = 2.

Next we show that |S ∩ T | 6= 0. Assume that |S ∩ T | = 0. Then we have

|B ∩T | = |S ∩D| = 2 and |A∩T | = |S ∩C| = 1. We claim that A∩C = {y}.
Otherwise, |A∩C| ≥ 2. Then X1∪{y} is a 3-vertex-cut of G, which contradicts

that G is 4-connected, and so d(y) = 4. Let A∩T = {a}, S∩C = {b}, S∩D =

{u, v}. First, let A′ = {a, z}, S ′ = {y} ∪ (S ∩D), B′ = G− ab− S ′−A′. Then

(ab, S ′; A′, B′) is a separating group of G, and so ab ∈ EN(G). Second, we claim

that az ∈ ER(G). Otherwise, az ∈ EN(G), we consider the separating group

(az, S ′; A′, B′) such that a ∈ A′, z ∈ B′. Obviously, y ∈ S ′. Since yz ∈ EN(G),

by Theorem 2.1.2 we have |B′| = 2, say B′ = {z, v1}. Then zv1yz is a 3-cycle of

G and v1 6= a, which is impossible to hold, so az ∈ ER(G). Since C ′ is a cycle

of G, we have {zu, zv}∩EN(G) 6= Ø. By Lemma 5.1.2 we have that au, av can

not belong to E(G) simultaneously. Without loss of generality, we may assume

that au 6∈ E(G). Let S ′ = (S−{u})∪{z}, A′ = A−{z}, B′ = B ∪{u}. Then
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(xy, S ′; A′, B′) is a separating group of G, and |A′| < |A|, which contradicts

that |A| is as small as possible. Therefore, S ∩ T 6= Ø, and so |S ∩ T | = 2.

Then, we have that |S ∩D| = |B ∩T | = 1, |A∩T | = |S ∩C| = 0, A∩C = {y}.

Let S∩T = {a, b}, S∩D = {u}. It is easy to see that ΓG(y) = {x, a, b, z}, ΓG(z)

= {y, a, b, u}.

First, we show that the conclusion of the theorem holds if az ∈ EN(G). By

Theorem 2.1.1 we consider its corresponding separating group (az, S1; A1, B1)

such that a ∈ B1, z ∈ A1. Since ayza is a 3-cycle of G, we have y ∈ S1, and so

y ∈ S1∩C, a ∈ B1∩T . By Theorem 2.1.2 we have |A1| = |D| = 2. If |A1∩D| =
2, since S1∩C 6= Ø, we have |S1∩T | ≤ 2, and so {z}∪ (S1∩T ) is a vertex-cut

with cardinality less than 4, a contradiction. Therefore, |A1 ∩ D| = 1. Since

b ∈ T and bz ∈ E(G), we have b ∈ A1 ∩ T . Since D is a connected subgraph

of G and |D| = 2, it is easy to see that |D ∩ S1| = 1. Since zu ∈ E(G), we

have D∩S1 = {u}. We claim that S1∩T = Ø. Otherwise, |S1∩T | = 1. Then

|S1 ∩C| = |B1 ∩T | = 1. Obviously, |(S1 ∩C)∪ (S1 ∩T )∪ (B1 ∩T )| = 3. Since

G is 4-connected, we have B1 ∩ C = Ø. Therefore, |C| = |C ∩ S1| = 1, which

contradicts |C| ≥ 2. Hence, S1∩T = Ø, and therefore, |S1∩C| = |B1∩T | = 2.

Here we distinguish the following cases:

(1.) d(y) = 4, d(a) ≥ 5. Arguments similar to that used in Subcase 2.2.1

can lead to that G contains a W ′-framework such that yz is its an inner edge.

Then the conclusion holds.

(2.) d(y) = d(a) = 4. Arguments similar to that used in Subcase 2.2.3 can

lead to that G contains a helm such that yz is its an inner edge. The conclu-

sion holds.

If bz ∈ EN(G), by the symmetry of az and bz, similar arguments can be

used to get the conclusion. Therefore, we may assume that az, bz ∈ ER(G).

Next we consider ay. Assume ay ∈ EN(G). By Theorem 2.1.1 we consider

its separating group (ay, S1; A1, B1) such that a ∈ A1, y ∈ B1. It is easy to see
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that z ∈ S1∩D, y ∈ B1∩C and a ∈ A1∩T . Since ay, yz ∈ EN(G), by Theorem

2.1.2 we have |C| = 2 = |B1|, and so C = {y, x}. By arguments analogous to

that used in Case 2, we can get that |B1 ∩ T | = |S1 ∩ C| = 1, B1 ∩ C = {y},
|A1 ∩T | = |D∩S1| = 2. Then S1 ∩C = {x}. Since byzb is a 3-cycle of G, it is

easy to see that B1∩T = {b} and d(x) = d(b) = d(z) = 4. Here we distinguish

the following cases:

(1.) d(a) ≥ 5. Argument analogous to that used in Subcase 2.2.1 can lead

to that G contains a W ′-framework such that xy, yz are its inner edges. Then

the conclusion holds.

(2.) d(a) = 4. Argument analogous to that used in Subcase 2.2.3 can lead

to that G contains a helm such that xy, yz are its inner edges. Then theorem

holds.

Thus, we may assume that ay, by ∈ ER(G). Then, according to the defini-
tion of the l-bi-fan, (l ≥ 1), G contains a l-bi-fan such that yz is its an inner
edge. This complete the proof. ¤

Lemma 6.2.1. Let G be a 4-connected graph with property (?), and let
P = y1y2 · · · yk be a path of [EN(G)] with k ≥ 3 and take a set D such that
Ø 6= D ⊂ V (G). Suppose that (y1y2, U

′; X ′, Y ′) is a separating group of G
such that y1 ∈ Y ′, y2 ∈ X ′ and D ∩ Y ′ 6= Ø. We choose i ∈ {1, 2, · · · , k} and a
separating group (yiyi+1, S; A,B) satisfying yi ∈ B, yi+1 ∈ A,D ∩ B 6= Ø such
that |A| is as small as possible. If i ≤ k − 2, we consider another separating
group (yi+1yi+2, S

′; A′, B′) such that yi+1 ∈ B′, yi+2 ∈ A′, Then one of the fol-
lowing conclusions holds:

(i) A ∩ B′ = {yi+1}, A ∩ A′ = {yi+2}, A ∩ S ′ = {a}, B′ ∩ S = {b}, S ∩
S ′ = Ø, yi ∈ B ∩ B′, |B ∩ S ′| = |A′ ∩ S| = 2, A′ ∩ S = {u, v}, where
yi+2u, yi+2v, yi+2a ∈ ER(G) and a, b, u, v ∈ G.

(ii) A ∩ A′ = {yi+2}, yi+1 ∈ A ∩ B′, S ∩ S ′ = Ø = A′ ∩ B, B ∩ S ′ = {d} =
D ∩ B, D ∩ B′ = Ø, A′ ∩ S = {c}, |B′ ∩ S| = |A ∩ S ′| = 2, yi ∈ B ∩ B′, where
d, c ∈ G.

(iii) A ∩ A′ = {yi+2}, yi+1 ∈ A ∩ B′, S ∩ S ′ = {w}, D ∩ B = {d} =
B∩S ′, D∩B′ = Ø = B∩A′, A′∩S = {c}, |B′∩S| = |A∩S ′| = 1, yi ∈ B∩B′,
where d, c, w ∈ G.
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(iv) G contains one of the following structures: l-belt, (l ≥ 1), helm, W -

framework, W ′-framework, l-bi-fan, (l ≥ 1), as its subgraph, such that it in-

tersects P at its some inner edge(s).

Proof. Let

X1 = (A ∩ S ′) ∪ (S ∩ S ′) ∪ (B′ ∩ S)

X2 = (A ∩ S ′) ∪ (S ∩ S ′) ∪ (A′ ∩ S)

X3 = (A′ ∩ S) ∪ (S ∩ S ′) ∪ (B ∩ S ′)

X4 = (B′ ∩ S) ∪ (S ∩ S ′) ∪ (B ∩ S ′)

We will distinguish the following cases to complete the proof.

Case 1. yi ∈ B ∩B′, yi+2 ∈ A ∩ A′.

Since B ∩B′ 6= Ø, X4 is a vertex-cut of G− yiyi+1. Since G is 4-connected,

we have |X4| ≥ 3. By similar arguments we can deduce that |X2| ≥ 3. Since

|X2| + |X4| = |S| + |S ′| = 6, we have |X2| = |X4|, and so |A ∩ S ′| = |B′ ∩ S|,
|A′ ∩ S| = |B ∩ S ′|.

First, we claim that A′ ∩ (B ∪S) 6= Ø. Otherwise, A′ ∩ (B ∪S) = Ø. Since

|A′ ∩ S| = 0, we have S ′ ∩ B = Ø. Since B is a connected subgraph of G, we

have B = B ∩ B′. Therefore, we have Ø 6= D ∩ B = D ∩ (B ∩ B′) ⊂ D ∩ B′.

For the separating group (yi+1yi+2, S
′; A′, B′) of G, we have yi+1 ∈ B′, yi+2 ∈

A′, D ∩B′ 6= Ø, and A′ ⊂ A, |A′| < |A|, which contradicts that |A| is as small

as possible, and so A′ ∩ (B ∪ S) 6= Ø. Since A′ is a connected subgraph of G

and A∩A′ 6= Ø 6= A′ ∩ (B ∪S), we have A′ ∩S 6= Ø 6= B ∩S ′. If |A′ ∩S| = 3,

then |X1| = 0, and so {yi, yi+2} would be a 2-vertex-cut of G, a contradiction.

Therefore, |A′ ∩ S| = 2 or |A′ ∩ S| = 1.
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Next we distinguish the following subcases.

Subcase 1.1. |A′ ∩ S| = |S ′ ∩B| = 2.

Let A′ ∩ S = {u, v}. Since G is 4-connected and X1 is a vertex-cut of

G − yiyi+1 − yi+1yi+2, we have that |X1| ≥ 2. Noticing that |S| = |S ′| = 3,

it is easy to see that |A ∩ S ′| = |B′ ∩ S| = 1, |S ∩ S ′| = 0. Let A ∩ S ′ =

{a}, B′ ∩ S = {b}. First, we claim that A ∩ B′ = {yi+1}. Otherwise,

|A ∩ B′| ≥ 2, and so X1 ∪ {yi+1} would be a 3-vertex-cut of G, a contra-

diction. Second, we claim that A ∩ A′ = {yi+2}. Otherwise, |A ∩ A′| ≥ 2. Let

A1 = A ∩ A′, S1 = X2, B1 = G − yi+1yi+2 − S1 − A1. It is easy to see that

D ∩ B1 6= Ø. Then (yi+1yi+2, S1; A1, B1) is a separating group of G such that

yi+1 ∈ B1, yi+2 ∈ A1 and D ∩B1 6= Ø. However, |A1| < |A|, which contradicts

that |A| is as small as possible. Therefore, A∩A′ = {yi+2}. Obviously, (ab, S1)

is a separating pair of G such that S1 = {yi+1, u, v}, and so ab ∈ EN(G). We

claim that yi+2u, yi+2v ∈ ER(G). Otherwise, {yi+2u, yi+2v} ∩ EN(G) 6= Ø.

From Lemma 5.1.2 we have that au, av can not belong to E(G) simulta-

neously. Without loss of generality, we may assume that au /∈ E(G). Let

A1 = A − {yi+2}, S1 = {yi+2} ∪ (S − {u}), B1 = G − yiyi+1 − S1 − A1, then

(yiyi+1, S1; A1, B1) is a separating group of G such that D ∩ B1 6= Ø. How-

ever, |A1| < |A|, which contradicts that |A| is as small as possible. There-

fore, yi+2u, yi+2v ∈ ER(G). We claim that ayi+2 ∈ ER(G). Otherwise,

ayi+2 ∈ EN(G), and we take its separating group (ayi+2, T
′; C ′, D′) such that

a ∈ C ′, yi+2 ∈ D′. Since ayi+1yi+2a is a 3-cycle of G, we have that yi+1 ∈ T ′.

Since yi+1yi+2 ∈ EN(G), from Theorem 2.1.2 we have that |D′| = 2. Let

D′ = {yi+2, v1}, then v1yi+1yi+2v1 is a 3-cycle of G and v1 6= a. Obviously, it

is impossible to hold in G, and hence, ayi+2 ∈ ER(G). Then the conclusion (i)

holds.

Subcase 1.2. |A′ ∩ S| = |B ∩ S ′| = 1.

Let A′∩S = {c}, B∩S ′ = {d}. Then we will discuss the following subcases.

Subcase 1.2.1. |S ∩ S ′| = 0, |B′ ∩ S| = |A ∩ S ′| = 2.
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It is easy to see that |X3| = 2. Since G is 4-connected, we have A′∩B = Ø

and |X2| = 3. We claim A ∩ A′ = {yi+2}. Otherwise, |A ∩ A′| ≥ 2. Let

A1 = A∩A′, S1 = X2, B1 = G−yi+1yi+2−S1−A1. Then (yi+1yi+2, S1; A1, B1)

is a separating group. Obviously, D ∩ B1 6= Ø and |A1| < |A|, which con-

tradicts that |A| is as small as possible. Therefore, A ∩ A′ = {yi+2}, and so

A′ = {yi+2, c}, |A′| = 2 < |A|. By the minimum property of |A|, we have

B′ ∩ D = Ø. Therefore, B ∩ D = B ∩ S ′ = {d} and |B ∩ D| = 1. Then

conclusion (ii) holds.

Subcase 1.2.2. |S ∩ S ′| = 1, |B′ ∩ S| = |A ∩ S ′| = 1.

Let A′ ∩ S = {c}, S ∩ S ′ = {w}, B ∩ S ′ = {d}. Since |X3| = 3 < 4,

we have B ∩ A′ = Ø. Arguments similar to that used in Subcase 1.2.1 can

lead to that A ∩ A′ = {yi+2}, yi+1 ∈ A ∩ B′. Since |A′| = 2 < |A|, by argu-

ments similar to that used in Subcase 1.2.1, we have that B′ ∩D = Ø, and so

D ∩B = B ∩ S ′ = {d}. Then conclusion (iii) holds.

Subcase 1.2.3. |S ∩ S ′| = 2, |B′ ∩ S| = |A ∩ S ′| = 0,

Let S ∩S ′ = {a, b}. We claim that A∩B′ = {yi+1}. Otherwise, |A∩B′| ≥
2. Then {yi+1, a, b} is a 3-vertex-cut of G, which contradicts that G is 4-

connected. It is easy to see that |X2| = 3. Arguments similar to that used

in Subcase 1.2.1 can lead to that A ∩ A′ = {yi+2}. By Corollary 2.1.3 we

have that {ayi+1, ayi+2} ∩ ER(G) 6= Ø, {byi+1, byi+2} ∩ ER(G) 6= Ø. Next we

distinguish the following cases.

(1.) ayi+2 ∈ EN(G). Then A′∩B = Ø and we consider the corresponding sep-

arating group (ayi+2, S1; A1, B1) such that yi+2 ∈ A1, a ∈ B1. Since ayi+1yi+2a

is a 3-cycle of G, we have yi+1 ∈ S1, and so yi+1 ∈ S1 ∩ B′. Since a ∈ S ′, we

have a ∈ S ′ ∩ B1. Obviously, d(yi+1) = d(yi+2) = 4. By arguments analogous

to that used in Subcase 2.2 of Theorem 6.2.3, we can get that yi+1yi+2 is an

inner edge of a W ′-framework or a helm, and so conclusion (iv) holds. For

byi+2 ∈ EN(G), we may apply similar arguments to get conclusion (iv) holds.
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Hence, we may assume that ayi+2, byi+2 ∈ ER(G).

(2.) ayi+1 ∈ EN(G). We consider the corresponding separating group (ayi+1, S1;

A1, B1) such that yi+1 ∈ A1, a ∈ B1. Then yi+1 ∈ A1 ∩ B′, a ∈ B1 ∩ S ′. Since

ayi+1yi+2a is a 3-cycle of G, we have yi+2 ∈ S1, and so yi+2 ∈ A′ ∩ S1. Since

ayi+2 ∈ E(G) and d(yi+2) = 4, by arguments analogous to that used in Sub-

case 2.2 of Theorem 6.2.3 we can get that yi+1yi+2 is an inner edge of a W ′-

framework or a helm. Therefore, conclusion (iv) holds. For byi+1 ∈ EN(G),

we may apply similar arguments to get conclusion (iv) holds.

Based on the above arguments, we may assume that ayi+1, byi+1, ayi+2, byi+2

∈ ER(G), and so G contains a l-bi-fan such that yi+1yi+2 is its an inner edge.

Therefore, conclusion (iv) holds.

Case 2. yi+2 ∈ A ∩ A′, yi ∈ B ∩ S ′.

Since yiyi+1 ∈ EN(G), by Theorem 2.1.2 we have that |B′| = 2. Since B′

is a connected subgraph of G, we have B ∩B′ = Ø. Because G is 4-connected

and X1 is a vertex-cut of G− yiyi+1 − yi+1yi+2, we have |X1| ≥ 2. Similar ar-

guments can lead to that |X2| ≥ 3. We claim that A∩B′ = {yi+1}. If not, i.e.,

|A∩B′| = 2, by B ∩S ′ 6= Ø and |S ′| = 3 we have |X1| ≤ 2, and so X1 ∪{yi+1}
is a vertex-cut of G with cardinality less than 4, which contradicts that G is

4-connected. Therefore, |A∩B′| = |B′∩S| = 1. If |B∩S ′| = 1, then |X3| = 3,

and so A′∩B = Ø. Then we have |B| = |B∩S ′| = 1, which contradicts |B| ≥ 2.

Hence |B ∩ S ′| ≥ 2. If |B ∩ S ′| = 3, then we have A∩ S ′ = Ø = S ∩ S ′, and so

|X1| = 1, which contradicts |X1| ≥ 2. Therefore, |B∩S ′| = 2 and |S ∩S ′| ≤ 1.

If |S∩S ′| = 1, then A∩S ′ = Ø and |A′∩S| = 1, and hence |X2| = 2, which con-

tradicts |X2| ≥ 3. Then we can get that S∩S ′ = Ø and |A∩S ′| = 1. By |S| = 3

we know that |A′∩S| = 2, |X2| = 3. We claim that A∩A′ = {yi+2}. If not, i.e.,

|A ∩ A′| ≥ 2, then we let A1 = A ∩ A′, S1 = X2, B1 = G− yi+1yi+2 − S1 − A1.

Then (yi+1yi+2, S1; A1, B1) is a separating group of G. It is easy to see that

B1 ∩D 6= Ø. However, now we have |A1| < |A|, which contradicts that |A| is

as small as possible. Therefore, A ∩ A′ = {yi+2}.



102 CHAPTER 6. THE NUMBER OF REMOVABLE EDGES

Let A∩S ′ = {a}, B′∩S = {b}. Next we show that byi, byi+1, ayi+1 ∈ ER(G)

by contradiction.

(1.) If byi ∈ EN(G). We consider its corresponding separating group (byi, T ; C,

K) of G such that b ∈ C, yi ∈ K. Since byiyi+1b is a 3-cycle of G, we have

yi+1 ∈ T . Since yiyi+1 ∈ EN(G), by Theorem 2.1.2 we can get |K| = 2, say

K = {yi, v1}. Then v1yi+1yiv1 is a 3-cycle of G and v1 6= b, which is impossible

in G. Hence byi ∈ ER(G).

(2.) If byi+1 ∈ EN(G). Similarly we consider its corresponding separating

group (byi+1, T ; C, K) of G such that b ∈ C, yi+1 ∈ K. It is easy to see that

{a, yi} ⊂ T . Since yiyi+1 ∈ EN(G), by Theorem 2.1.2 we have |K| = 2, say

K = {yi+1, v1}. Then v1 ∈ ΓG(yi) ∩ ΓG(yi+1) ∩ ΓG(a), which is impossible in

G, and so byi+1 ∈ ER(G).

(3.) If ayi+1 ∈ EN(G). Again similarly we consider its corresponding sepa-

rating group (ayi+1, T ; C, K) such that a ∈ C, yi+1 ∈ K. Since ayi+1yi+2a is a

3-cycle of G, we have yi+2 ∈ T . Since yi+1yi+2 ∈ EN(G), by Theorem 2.1.2 we

have |K| = 2. Let K = {yi+1, v1}, then yi+1v1yi+2yi+1 is a 3-cycle of G, and

v1 6= a, which is impossible in G, and so ayi+1 ∈ ER(G).

Let A1 = {a, yi+2}, S1 = S ∩A′ ∪ {yi+1} and B1 = G− ab−S1−A1. Then

(ab, S1; A1, B1) is a separating group of G, and so ab ∈ EN(G).

Noticing that d(b) = d(yi+1) = 4, from the definition of an l-belt we know

that G contains an l-belt with yiyi+1 as an inner edge. Therefore, conclusion

(iv) holds.

Case 3. yi ∈ B ∩ S ′, yi+2 ∈ A′ ∩ S.

By Theorem 2.1.2 we have |A| = 2, |B′| = 2. Since A and B′ are con-

nected subgraphs of G, it follows A ∩ A′ = Ø = B ∩ B′. If |A ∩ B′| = 2,
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then B′ ∩ S = Ø = A ∩ S ′. Since B ∩ S ′ 6= Ø 6= A′ ∩ S, noticing that

|S| = |S ′| = 3, we have |S ∩ S ′| ≤ 2, and so {yi+1} ∪ (S ∩ S ′) is a vertex-

cut of G with cardinality less than 4, which contradicts the fact that G is

4-connected. Therefore, A ∩ B′ = {yi+1}, and so |B′ ∩ S| = |A ∩ S ′| = 1. If

|A′ ∩S| = 1, then A′ ∩B 6= Ø. Then X3 is a vertex-cut of G, and so |X3| ≥ 4.

Then, 1 = |A′ ∩ S| > |A ∩ S ′| = 1, a contradiction. Hence, |A′ ∩ S| = 2, and

so S ∩ S ′ = Ø, |B ∩ S ′| = 2. By arguments similar to those used in Case 2 of

Theorem 6.2.3, we know that conclusion (iv) of the lemma holds.

Case 4. yi ∈ B ∩B′, yi+2 ∈ A′ ∩ S.

Arguments analogous to that used in Case 1 of Theorem 6.2.3 can show

that G contains an l-belt with yi+1yi+2 as an inner edge. Therefore, conclusion

(iv) of the lemma holds. This complete the proof. ¤

Theorem 6.2.4 Let G be a 4-connected graph with property (?). Suppose

that H is a helm of G such that H is defined as in Definition 1.2.1. Let

V (H) = {a, x1, x2, x3, x4, v1, v2, v3, v4} and P = y1y2 · · · yh a path in [EN(G)]

with h ≥ 2 such that a /∈ V (P ) and {y1, yh} ⊂ {x1, x2, x3, x4}. Then, G con-

tains one of the following structures H1 as subgraph: l-belt, l-bi-fan, (l ≥ 1),

W -framework, W ′-framework or helm, such that at least one inner edge of H1

belongs to E(P ∪H), and H and H1 do not have any common inner edge.

Proof. Without loss of generality, we assume that y1 = x1. Then it is easy

to see that y2 = v1. Let k = h + 1, yk = a, then P ′ = y1y2 · · · yk is also

a path of [EN(G)] where k ≥ 3. Let D = {a}. We consider the separat-

ing group (x1v1, S1; A1, B1) such that S1 = {x2, x3, x4}, B1 = {x1, a}, A1 =

G− x1v1 − S1 −B1. Obviously, D ∩B1 6= Ø.

We consider the separating group (yiyi+1, S; A,B) of G, where i = 1, 2, · · · ,
k − 1, such that yi ∈ B, yi+1 ∈ A,D ∩ B 6= Ø and |A| is as small as possible.

We claim that i + 1 ≤ k − 1 holds. Otherwise, yi+1 = yk, i.e., yi+1 = a. Then,

a ∈ A ∪ S, which contradicts D ∩B 6= Ø. Therefore, i + 1 ≤ k − 1.
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We consider another separating group (yi+1yi+2, S
′; A′, B′) such that yi+1 ∈

B′, yi+2 ∈ A′, and |A′| is as small as possible. We know that one of the four

conclusions of Lemma 6.2.1 holds. Now we discuss them as follows.

(1.) Conclusion (i) of Lemma 6.2.1 holds. It is easy to see that P ′ + ax1 is

a cycle of [EN(G)]. Then each vertex of P is incident with at least two unre-

movable edges of G. However, from conclusion (i) we have that d(yi+2) = 4

and yi+2 is incident with three removable edges of G. Therefore, conclusion (i)

can not hold.

(2.) Conclusion (ii) of Lemma 6.2.1 holds. Then B∩S ′ = {d} = {a} = D∩B,

c ∈ {x1, x2, x3, x4}, and ac(= dc) is not in any 3-cycle of G. However, from

the definition of the helm, we know that ac(= axj) for each j = 1, 2, 3, 4 is in

two 3-cycles of G, a contradiction.

(3.) Conclusion (iii) of Lemma 6.2.1 holds. Then {d} = B∩S ′ = {a} = D∩B.

Since ac ∈ E(G), we have c ∈ {x1, x2, x3, x4}. Then ac belongs to two 3-cycles

of G. However, this is impossible in G. Therefore, conclusion (iii) cannot hold.

(4.) If conclusion (iv) of Lemma 6.2.1 holds. Then the theorem holds. This

completes the proof. ¤

Theorem 6.2.5 Let G be a 4-connected graph with property (?) and let L1

be a maximal 1-belt of G as defined in Definition 1.2.3 such that V (L1) =

{x1, x2, x3, y1, y2, y3}. Suppose that P = l1l2 · · · lh is a path of [EN(G)] such

that {l1, lh} ⊂ {x1, x3, y1,

y3} and {x2, y2}∩V (P ) = Ø. Then G contains one of the following structures

L′ as subgraph: l-belt, (l ≥ 1), helm, W -framework, W ′-framework or l-bi-fan,

(l ≥ 1), such that at least one inner edge of L′ belongs to E(P ∪ L1).

Proof. We consider the following cases.

Case 1. lh = y3.
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By letting k = h + 1, lk = y2, then P ′ = l1l2 · · · lk is also a path of [EN(G)].

Let D = {x2, y2}, and consider a separating group (l1l2, S1; A1, B1) of G such

that l1 ∈ B1, l2 ∈ A1. Next we will show that B1 ∩D 6= Ø. We distinguish the

following subcases.

Subcase 1.1. l1 = x1.

We claim that x2 ∈ B1. Otherwise, x2 ∈ S1. Since x1x2 ∈ EN(G), by

Theorem 2.1.2 we have |B1| = 2. Let B1 = {l1, v1}, then v1 ∈ ΓG(x1)∩ΓG(x2).

If v1 = y1, then ΓG(y1) = {x1, x2, y2, w}, where w ∈ V (G), which contra-

dicts the assumption that L1 is a maximal 1-belt. If v1 = x3, then ΓG(x3) =

{x2, y2, x1, w}. It is easy to see that (x2y1, T ) is a separating pair of G such

that T = {w, y2, x1}, and so x2y1 ∈ EN(G), which contradicts the definition

of the l-belt. Therefore, x2 ∈ B1 holds, i.e., D ∩B1 6= Ø.

Subcase 1.2. l1 = y1.

Then if y2 ∈ S1, since y1y2 ∈ EN(G), by Theorem 2.1.2 we have |B1| = 2.

It is easy to see that B1 = {y1, x2}, and so D ∩ B1 6= Ø. If y2 ∈ B1, then

D ∩B1 6= Ø.

Subcase 1.3. l1 = x3.

We claim that D ∩ B1 6= Ø. Otherwise, D ∩ B1 = Ø. Since x3y2, x3x2 ∈
E(G), we have x2, y2 ∈ S1. Since x2x3 ∈ EN(G), by Theorem 2.1.2 we have

|B1| = 2. Let B1 = {x3, v1}, then it is easy to see that v1 ∈ ΓG(x2)∩ ΓG(y2)∩
ΓG(x3). Then v1 = y1 holds, i.e., y1x3 ∈ E(G). Since x2x3 ∈ EN(G), we

consider the separating group (x2x3, T1; C1, D1) such that x2 ∈ C1, x3 ∈ D1.

Then y1, y2 ∈ T1. By Theorem 2.1.4, we have y1y2 ∈ ER(G), which contradicts

the definition of the l-belt. Therefore, D ∩B1 6= Ø.

We consider the separating group (lili+1, S; A,B) of G such that li ∈
B, li+1 ∈ A,D ∩ B 6= Ø and |A| is as small as possible. We claim that

i + 1 ≤ k − 1. Otherwise, i + 1 = k holds. Then lk = y2. From x2y2 ∈ E(G)
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we have that {x2, y2} ⊂ A ∪ S, which contradicts D ∩ B 6= Ø. Therefore,

i + 1 ≤ k − 1 holds.

Case 2. lh = x3.

We consider the separating group (l1l2, S1; A1, B1) of G such that l1 ∈
B1, l2 ∈ A1. Let D = {x2, y2}. Similarly, next we need to show that D ∩B1 6=
Ø.

If l1 = y1. From y1y2 ∈ E(G) we have that y2 ∈ B1 ∪ S1. If y2 ∈ S1,

since y1y2 ∈ EN(G), by Theorem 2.1.2 we obtain |B1| = 2. Let B1 = {y1, v1}.
Then y1y2v1y1 is a 3-cycle of G. It is easy to see that v1 = x2. Then D∩B1 6= Ø.

By the symmetry of the maximal 1-belt, for the other cases we may apply

similar arguments to prove D ∩B1 6= Ø.

Now we consider the separating group (lili+1, S; A,B) such that li ∈ B, li+1 ∈
A,D ∩B 6= Ø and |A| is small as possible, where i = 1, 2 · · · , h− 1. We claim

that i + 1 ≤ h− 1. Otherwise, lh = x3 ∈ A. Since x2x3, y2x3 ∈ E(G), we have

that x2, y2 ∈ A ∪ S, which contradicts D ∩B 6= Ø.

We consider the separating group (li+1li+2, S
′; A′, B′) of G such that li+1 ∈

B′, li+2 ∈ A′ and |A′| is as small as possible. Then one of the four conclusions

of Lemma 6.2.1 holds. Here we discuss them as follows.

(1.) It is easy to see that each vertex of P is incident with at least two

unremovable edges, and so conclusion (i) of Lemma 6.2.1 cannot hold.

(2.) If conclusion (ii) of Lemma 6.2.1 holds, then we have that B ∩ S ′ =

D ∩ B = {d} ⊂ {x2, y2}. By the symmetry between x2 and y2, without loss

of generality, we may assume that d = x2. For d = y2, we may apply similar

arguments.
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By Lemma 6.2.1, we know that A ∩ A′ = {li+2}, li+1 ∈ A ∩ B′. Let

A ∩ S ′ = {v1, v2}. If v1li+2 ∈ EN(G), we consider the corresponding sepa-

rating group (v1li+2, T ; C, K) such that v1 ∈ C, li+2 ∈ K, and so v1 ∈ S ′ ∩ C.

(2.1.) If li+1 ∈ B′ ∩K. By the arguments analogous to that used in Case 1

of Theorem 6.2.3, we can get that |A′| = 2, |K ∩A′| = |A′ ∩ T | = 1, |C ∩ S ′| =
2, |S ′ ∩ K| = 1. Let K ∩ S ′ = {b}, A′ ∩ T = {a}, S ′ ∩ C = {v1, w}. Then

by arguments analogous to that used in Case 1 of Theorem 6.2.3, we have

that ali+2, av1 ∈ ER(G), bli+2 ∈ ER(G), ab ∈ EN(G), d(a) = d(li+2) = 4. It is

easy to see that the l-belt is a subgraph of G, where l ≥ 1, and ΓG(li+2) =

{li+1, v1, a, b}. We claim that li+2 is not an end-vertex of P . Otherwise, we have

li+2 ∈ {x1, x3, y1, y3}. Since B ∩ S ′ = {x2}, and x1, x3, y1 ∈ ΓG(x2), then this

is true only if li+2 = y3 holds. Let A′ ∩ S = {k}. Noticing that (kx2, T
′) is the

separating pair of G such that T ′ = {li+1}∪ (S ′−{x2}), we have k ∈ {x3, x1}.
If k = x3, then x3y3 ∈ E(G) and d(x3) = 4 must hold, which contradicts the

definition of the maximal 1-belt. If k = x1, noticing that y2 6∈ V (P ), then

li+1 6= y2, and so we have that x1y2 ∈ E(G), a contradiction. Therefore, li+2 is

not an end-vertex of P . Since ali+2, bli+2 ∈ ER(G), we have that li+2v1 ∈ E(P )

and li+2v1 is an inner edge of the l-belt. Hence, the theorem holds.

(2.2.) If li+1 ∈ B′ ∩ T . Then by arguments analogous to that used in Case 2

of Theorem 6.2.3, we have that li+1li+2 is an inner edge of one of the following

subgraphs of G: helm, W ′-framework, W -framework or l-belt. Therefore, the

theorem holds.

So, next we may assume that v1li+2 ∈ ER(G). For the case v2li+2 ∈ EN(G),

we may apply similar arguments as the case of v1li+2 ∈ EN(G). So, next we

may assume that v2li+2 ∈ ER(G). Let A′ ∩ S = {c}. Since P is a path of

[EN(G)], and li+2 is not an end-vertex of P , we have li+2c ∈ EN(G)∩E(P ). If

cv1 ∈ EN(G), we consider the corresponding separating group (cv1, T
′; C ′, D′)

of G such that v1 ∈ C ′, c ∈ D′. Obviously, li+2 ∈ T ′. Since cli+2 ∈ EN(G), by

Theorem 2.1.2 we have |D′| = 2, and so D′ = {c, v2}. Then, |ΓG(c)∩ΓG(v2)| ≥
2. Noticing that v1 ∈ C1, obviously this is impossible to hold in G. So,
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cv1 ∈ ER(G). By analogous arguments, we have cv2 ∈ ER(G). It is easy to see

that cli+2 is an inner edge of an l-bi-fan, and so the theorem holds.

(3.) If conclusion (iii) of Lemma 6.2.1 holds. Then we have B∩S ′ = D∩B =

{d} ⊂ {x2, y2}. By the symmetry of x2 and y2, we may assume that d = y2.

Let A∩ S ′ = {v1}, S ∩ S ′ = {w}, A′ ∩ S = {c}. Then ΓG(c) = {li+2, v1, w, y2}.
Since cw ∈ E([S]), by Theorem 2.1.4 we obtain cw ∈ ER(G). By analogous

arguments as used in (2.1.) we can show that li+2 is not an end-vertex of P .

(3.1.) If li+2v1 ∈ EN(G). We consider the corresponding separating group

(li+2v1, T ; C, K) such that li+2 ∈ K, v1 ∈ C. Then li+2 ∈ A′ ∩ K, v1 ∈
C ∩S ′, li+1 ∈ B′. We claim that li+1 6∈ B′ ∩K. Otherwise, li+1 ∈ B′ ∩K, A′ =

{li+2, c}. By arguments analogous to that used in Case 1 of Theorem 6.2.3,

we can get that A′ ∩ K = {li+2}, A′ ∩ T = {c}, T ∩ S ′ = Ø, |T ∩ B′| =

|C ∩ S ′| = 2, |K ∩ S ′| = 1. Since wli+2 ∈ E(G), we have w ∈ K ∩ S ′. Let

A2 = (K ∩ B′) ∪ {w}, S2 = (T ∩ B′) ∪ {li+2}, B2 = G − cw − S2 − A2. Then

(cw, S2; A2, B2) is a separating group of G. So, cw ∈ EN(G), an contradiction

to cw ∈ ER(G). Hence, li+1 6∈ B′ ∩ K, and so li+1 ∈ B′ ∩ T . By arguments

analogous to that used in Case 2 of Theorem 6.2.3, we have |A′| = |K| = 2 and

|K∩S ′| = |A′∩T | = 1. Noticing that c ∈ A′, w ∈ S ′, ΓG(li+2) = {li+1, c, w, v1},
it is easy to see that K ∩ S ′ = {w}, A′ ∩ T = {c}. By arguments analogous

to that used in Case 2 of Theorem 6.2.3, and noticing that cw ∈ ER(G), we

see that li+1li+2 is an inner edge of one of the following subgraphs of G: W ′-

framework, W -framework or helm. Therefore, the theorem holds.

So, next we may assume that li+2v1 ∈ ER(G).

(3.2.) If wli+2 ∈ EN(G). We consider the corresponding separating group

(wli+2, T
′; C ′, D′) of G such that w ∈ C ′, li+2 ∈ D′. Then w ∈ S ′ ∩ C ′.

(3.2.1.) If li+1 ∈ B′ ∩ D′. By arguments analogous to that used in Case

1 of Theorem 6.2.3, we know that wli+2 is an inner edge of an l-belt, where

l ≥ 1, and cli+2 ∈ ER(G). Since li+2 is incident with only two unremovable
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edges li+1li+2, wli+2, and li+2 is not an end-vertex of P , we have wli+2 ∈ E(P ).

Hence, the theorem holds.

(3.2.2.) If li+1 ∈ B′ ∩ T ′. Then by an argument analogous to that used in

Case 2 of Theorem 6.2.3, we know that li+1li+2 is an inner edge of one of the

following subgraphs of G: l-belt, W -framework, W ′-framework or helm, and

so the theorem holds.

Therefore, next we may assume that wli+2 ∈ ER(G).

Since E(P ) ⊂ EN(G), we have cli+2 ∈ EN(G). If cv1 ∈ EN(G), we consider

the corresponding separating group (cv1, T
′; C ′, D′) such that v1 ∈ C ′, c ∈ D′.

Obviously, li+2 ∈ T ′. Since cli+2 ∈ EN(G), by Theorem 2.1.2 we obtain

|D′| = 2. Let D′ = {u, c}, then culi+2c is a 3-cycle of G, and so this is

true only if u = w holds. Since cy2(= cd) ∈ E(G), we have y2 ∈ T ′, and so

wy2 ∈ E(G). We consider the separating group (cli+2, T1; C1, D1) such that

c ∈ C1, li+2 ∈ D1. Since cv1li+2c is a 3-cycle of G, we conclude v1 ∈ T1. Then

we have li+2 ∈ D1 ∩ T ′, v1 ∈ C ′ ∩ T1, c ∈ D′ ∩ C1. By arguments analogous to

that used in Case 2 of Theorem 6.2.3, and by noticing that d(li+2) = 4, and

v1li+2 ∈ E(G), we can get that cli+2 is an inner edge of one of the following

subgraphs of G: W ′-framework or helm. Therefore, the theorem holds.

So, next we may assume cv1 ∈ ER(G). It is easy to see that G contains an

l-bi-fan such that cli+2 is an inner edge, where l ≥ 1. Analogous arguments

can lead to cli+2 ∈ E(P ). So, the theorem holds.

(4.) If conclusion (iv) of Lemma 6.2.1 holds. Then the Theorem holds. This

completes the proof. ¤

Corollary 6.2.1 Let G be a 4-connected graph with property (?) and let

L′1 be a maximal 1-co-belt of G defined as in Definition 1.2.4 with V (L′1) =

{x1, x2, x3, x4, y1, y2, y3}. Suppose that P = l1l2 · · · lh is a path of [EN(G)] such

that {x2, x3, y2} ∩ V (P ) = Ø and {l1, lh} ⊂ {x1, x4, y1, y3}. Then, G contains
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one of the following structures as subgraph: l-belt, (l ≥ 1), W -framework,

W ′-framework, helm or l-bi-fan, (l ≥ 1), such that it has some inner edge(s)

belonging to E(P ).

Proof. We distinguish the following cases to complete the proof.

Case 1. lh = x4. By letting k = h + 1, lk = x3, then P ′ = l1l2 · · · lk
is also a path of [EN(G)]. Let D = {x2, x3, y2}, and consider a separating

group (l1l2, S1; A1, B1) of G such that l1 ∈ B1, l2 ∈ A1. Next we show that

B1 ∩D 6= Ø. We distinguish the following subcases.

Subcase 1.1. l1 = x1.

We claim that x2 ∈ B1. Otherwise, x2 ∈ S1. Since x1x2 ∈ EN(G), by

Theorem 2.1.2 we have |B1| = 2. Let B1 = {l1, v1}, then v1 ∈ ΓG(x1)∩ΓG(x2).

If v1 = y1, then ΓG(y1) = {x1, x2, y2, w}, where w ∈ V (G), which contradicts

the assumption that L′1 is a maximal 1-co-belt. Obviously, v1 6∈ {x3, y2}, and

therefore x2 ∈ B1 holds, i.e., D ∩B1 6= Ø.

Subcase 1.2. l1 = y1.

Then if y2 ∈ S1, since y1y2 ∈ EN(G), by Theorem 2.1.2 we have that

|B1| = 2. It is easy to see that B1 = {y1, x2}, and so D ∩ B1 6= Ø. If y2 ∈ B1,

then D ∩B1 6= Ø.

Subcase 1.3. l1 = y3.

We claim that D ∩ B1 6= Ø. Otherwise, D ∩ B1 = Ø. Since x3y3, y2y3 ∈
E(G), we have x3, y2 ∈ S1. Since y2y3 ∈ EN(G), by Theorem 2.1.2 we have

|B1| = 2. Let B1 = {y3, v1}, then it is easy to see that v1 ∈ ΓG(y2) ∩ ΓG(y3) ∩
ΓG(x3), which is impossible to hold in G. Therefore, D ∩B1 6= Ø.

We consider the separating group (lili+1, S; A,B) of G such that li ∈
B, li+1 ∈ A,D ∩ B 6= Ø and |A| is as small as possible. We claim that

i+1 ≤ k−1. Otherwise, i+1 = k. Then lk = x3. Since x2x3, y2x3 ∈ E(G), we
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have {x2, x3, y2} ⊂ A∪S, which contradicts D∩B 6= Ø. Therefore, i+1 ≤ k−1

holds.

Case 2. lh = y3.

By letting k = h + 1, lk = y2, then P ′ = l1l2 · · · lk is also a path of [EN(G)].

Let D = {x2, x3, y2}. We consider the separating group (l1l2, S1; A1, B1) of G

such that l1 ∈ B1, l2 ∈ A1. Similarly, next we need to show that D ∩B1 6= Ø.

If l1 = y1. Since y1y2, y1x2 ∈ E(G), we have x2, y2 ∈ B1∪S1. If x2, y2 ∈ S1,

since y1y2 ∈ EN(G), by Theorem 2.1.2 we obtain |B1| = 2. Let B1 = {y1, v1}.
Then v1 = ΓG(y1) ∩ ΓG(y2) ∩ ΓG(x2), which is impossible to hold in G. Then

D ∩B1 6= Ø.

By the symmetry of the maximal 1-co-belt, for the other cases we may

apply similar arguments.

We consider the separating group (lili+1, S; A,B) such that li ∈ B, li+1 ∈
A,D ∩B 6= Ø and |A| is small as possible, where i = 1, 2 · · · , k − 1. We claim

that i + 1 ≤ k − 1. Otherwise, lk = y2 ∈ A. Since x2y2, y2x3 ∈ E(G), we have

x2, x3, y2 ∈ A ∪ S, which contradicts D ∩B 6= Ø.

We consider the separating group (li+1li+2, S
′; A′, B′) of G such that li+1 ∈

B′, li+2 ∈ A′ and |A′| is as small as possible. By Lemma 6.2.1 we have that

one of the four conclusions of Lemma 6.2.1 holds. Here we will discuss them

as follows.

(1.) It is easy to see that each vertex of P is incident with at least two

unremovable edges, and so conclusion (i) of Lemma 6.2.1 cannot hold.

(2.) If conclusion (ii) of Lemma 6.2.1 holds. Then we have B∩S ′ = D∩B =

{d} ⊂ {x2, x3, y2}.
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First, we claim that li+2 is not the end-vertex of P . Otherwise, we assume

that li+2 ∈ {x1, x4, y1, y3} holds. Let A′ ∩ S = {k}. Noticing that (kd, T ′) is

a separating pair of G such that T ′ = {li+1} ∪ (S ′ − {d}), so kd ∈ EN(G). If

d = x2, since x1x2, x2y1 ∈ E(G), we have that li+2 ∈ {y3, x4}: (1.) If li+2 = x4,

it is easy to see that k ∈ {x1, x3}. If k = x1, noticing that x3 6∈ V (P ), then

li+1 6= x3, and thus x1x3 ∈ E(G), a contradiction; if k = x3, then we will have

that |ΓG(x3) ∩ ΓG(x4)| = 2, which is impossible in G. (2.) If li+2 = y3, we

claim that k 6= x3. Otherwise, we have y3x4 ∈ E(G) and d(y3) = 4, which

contradicts the definition of maximal 1-co-belt. Then only k = x1 holds, this

implies |ΓG(x1)∩ΓG(y3)| = 2, x1y3 ∈ E(G) and d(x1) = d(y3) = 4, which is im-

possible in G. Therefore, d 6= x2. By the symmetry of x2 and x3, we have that

d 6= x3. Therefore, d = y2 holds. Hence li+2 ∈ {x1, x4} and k ∈ {y1, y3}. (1.)

If li+2 = x1: We claim that k 6= y1, otherwise, we have x1y1 ∈ E(G), d(y1) = 4,

which contradicts the definition of the maximal 1-co-belt. So k = y3 holds.

Then we have that |ΓG(x1) ∩ ΓG(y3)| = 2 and x1y3 ∈ E(G), d(x1) = d(y3) = 4

holds, which is impossible in G. (2.) If li+2 = x4, by the symmetry of x1 and

x4, we may apply similar arguments to deduce that the assumption is not true.

From the above arguments, we conclude that li+2 is not the end-vertex of P .

We may apply arguments similar to that used in (2) of Theorem 6.2.5 to

show that the corollary is true.

(3.) If conclusion (iii) of Lemma 6.2.1 holds, then we have that B ∩ S ′ =

D ∩B = {d} ⊂ {x2, x3, y2}.

We may apply arguments analogous to that used in (2) to show that li+2

is not an end-vertex of P . We may also apply arguments as used in (3) of

Theorem 6.2.5 to get that the corollary is true.

(4.) If conclusion (iv) of Lemma 6.2.1 holds, then the corollary is true. This

completes the proof. ¤
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6.3 The Number of Removable Edges in a

4-Connected Graph

Being well prepared by the results in the previous section, we are ready to

show the main results of this chapter.

Let M be a 5-wheel such that V (M) = {a, x, y, z, v} and a is its cen-

ter. Let T1, T2, T3, T4 be four trees such that for each i ∈ {1, 2, 3, 4}, Ti

has k vertices of degree one and |Ti| − k vertices of degree four. Let the

vertices of degree four be ui
(1), ui

(2), · · · , ui
(|Ti|−k), and let the vertices of de-

gree one be xi
(1), xi

(2), · · · , xi
(k). Let M1,M2, · · · ,Mk be k copies of M and

a(j), x(j), y(j), z(j), v(j) the vertices of Mj corresponding to the vertices a, x, y, z, v

of M , respectively, where j = 1, 2, · · · , k. For each j ∈ {1, · · · , k}, identify

x1
(j), x2

(j), x3
(j), x4

(j) with x(j), y(j), z(j), v(j) such that each of x1
(j), x2

(j), x3
(j),

x4
(j) identifies with one and only one of x(j), y(j), z(j), v(j). Denote the resulting

graph by G. It is easy to see that G is 4-connected. Next we show that for each

4-cycle C = x(j)y(j)z(j)v(j)x(j) of G, we have E(C) ⊂ ER(G), and the other

edges in G are unremovable, where j = 1, 2, · · · , k. For y(j)ui
(l) ∈ E(G),

let S = {x(j), v(j), z(j)}, A = {a(j), y(j)}, B = G − y(j)ui
(l) − S − A, then

(y(j)ui
(l), S; A,B) is a separating group of G, and hence y(j)ui

(l) ∈ EN(G).

Symmetrically, we can show that x(j)ui
(l), z(j)ui

(l), v(j)ui
(l) ∈ EN(G), where

j = 1, 2, · · · , k; i = 1, 2, 3, 4; l = 1, 2, · · · , |T |−k. For each edge a(j)x(j), it is easy

to see that (a(j)x(j), T ) is a separating pair of G such that T = {y(j), v(j), ui
(j)}

and ui
(l)z(j) ∈ E(G). By symmetry, we conclude a(j)y(j), a(j)z(j), a(j)v(j) ∈

EN(G). Using Corollary 2.1.3 it is easy to see that for each 4-cycle C =

x(j)y(j)z(j)v(j)x(j), we have E(C) ⊂ ER(G). For each edge e of Ti, for ex-

ample, e = u1
(l)u1

(l+1), it is easy to see that (e, S) is a separating pair of

G such that S = {u2
(l), u3

(l), u4
(l)}. Therefore, for each edge e of Ti, where

i = 1, 2, 3, 4, we have that e ∈ EN(G), and so eR(G) = 4k, |Ti| = (3k −
2)/2, (i = 1, 2, 3, 4), |G| = 7k− 4, eR(G) = (4|G|+ 16)/7. We denote the set of

all the above constructed graphs by =.

Theorem 6.3.1. Let G be a 4-connected graph of order at least 5. If G is

neither C2
5 nor C2

6 , then eR(G) ≥ (4|G| + 16)/7 and the equality holds if and
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only if G ∈ =.

Proof. Let |G| = n, |E(G)| = m. We prove the theorem by induction on

(n + m). Since G is not C2
5 , we have n ≥ 6. If n = 6, since G is not C2

6 , we

obtain m ≥ 13, (n + m) ≥ 19. It is easy to see that eR(G) ≥ 9 > (4n + 16)/7.

For n = 7, the relation eR(G) ≥ 9 > (4n+16)/7 is also easily seen. Therefore,

next we may assume that n ≥ 8. We distinguish the following cases to com-

plete the proof.

Case 1. G does not have property (?), i.e., there exists an edge e = xy ∈
ER(G) such that d(x) ≥ 5 and d(y) ≥ 5 in G.

Then consider G ª e = G − xy. It is easy to see that removable edges in

G−xy are also removable edges in G, and hence eR(G) ≥ eR(Gªe)+1. Then,

|G| = |Gª e|, |E(Gª e)| = m− 1, and therefore |Gª e|+ |E(Gª e)| < n+m.

If Gª e is either C2
5 or C2

6 , then eR(G) ≥ 9 > (4n + 16)/7. If Gª e is neither

C2
5 nor C2

6 , by the induction hypothesis we know that eR(G) ≥ eR(Gªe)+1 ≥
(4n + 16)/7 + 1 > (4n + 16)/7 is true.

Next we may suppose that G has property (?).

Case 2. G contains a 2-bi-fan as subgraph.

By Theorem 6.2.1 we know that there exists an edge e ∈ E(G) such that

eR(G) ≥ eR(G ª e) + 1. Here, |G ª e| = n − 1, |E(G ª e)| = m − 3. Then,

|G ª e| + |E(G ª e)| < n + m. If G ª e equals C2
5 or C2

6 , then eR(G) ≥ 10 >

(4n + 16)/7. If G ª e is neither C2
5 nor C2

6 , by the induction hypothesis we

know that eR(G) ≥ eR(Gª e) + 1 ≥ [4(n− 1) + 16]/7 + 1 > (4n + 16)/7.

Case 3. G contains an l-belt as its subgraph where l ≥ 3.

Then by Theorem 6.2.2 there exists an edge e ∈ E(G) such that eR(G) ≥
eR(G ª e) + 2. If G ª e is either C2

5 or C2
6 , then eR(G) ≥ 12 > (4n + 16)/7.

If G ª e is neither C2
5 nor C2

6 , by the induction hypothesis we know that

eR(G) ≥ eR(Gª e) + 2 ≥ [4(n− 2) + 16]/7 + 2 > (4n + 16)/7.
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Case 4. For any edge e ∈ ER(G), when |G ª e| = n, we have that

eR(G) < eR(Gªe); when |Gªe| = n−1, it follows that eR(G) < eR(Gªe)+1;

when |G ª e| = n − 2, we deduce that eR(G) < eR(G ª e) + 2. Then we dis-

tinguish the following subcases.

Subcase 4.1. [EN(G)] is a forest.

Then eN(G) = n− t such that t is the number of components in [EN(G)].

Therefore, eR(G) ≥ 2n− n + t = n + t > (4n + 16)/7.

Subcase 4.2. [EN(G)] contains a cycle.

By Theorem 6.2.3 and by the above arguments in Cases 2 and 3 we get

that G contains some structures in Υ as its subgraphs. Let G contain k1 max-

imal 1-belts, k2 maximal 1-bi-fans, k3 maximal 1-co-belts, k4 W -frameworks,

k5 W ′-frameworks, k6 maximal 2-belts, k7 maximal 2-co-belts, and h helms.

Let E1 be the set of inner edges of the above-mentioned subgraphs. Then,

|E1| = 2k1 + k2 + 3k3 + 2k4 + 3k5 + 4k6 + 5k7 + 4h 〈1〉

Let E0 = EN(G)− E1, then we have the following results.

(1.) [E0] is a forest. This follows from Theorem 6.2.3, Lemma 6.1.1, and the

definitions of the above-mentioned subgraphs.

(2.) Let r =
∑

x∈G(d(x) − 4) =
∑

x∈Gd(x) − 4n, then e(G) = 2n + r/2.

Let n1 = n − h − |[E0]|, then n1 ≥ 0, and n1 = 0 if and only if V (G) =

V ([E0])
⋃{a1, a2, · · · , ah} such that ai is the center of a helm, where i =

1, 2, · · · , h.

(3.) eR(G) = e(G) − eN(G), eN(G) = |E0| + |E1| = |[E0]| − t + |E1| =

n− n1 − h− t + |E1|, where t is the number of components in [E0].

By noticing the number of removable edges in the above-mentioned subgraphs,

we have the following result
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eR(G) = e(G)− eN(G) = 2n + r/2− n + h + n1 + t− |E1|

≥ 3k1 + 4k2 + 4k3 + 5k4 + 5k5 + 5k6 + 6k7 + 4h. 〈2〉

From the formulas 〈1〉 and 〈2〉, we have the following result

n + r/2− 7h + n1 + t− 5k1 − 5k2 − 7k3 − 7k4 − 8k5 − 9k6 − 11k7 ≥ 0.

Then,

6n+3r− 42h+6n1 +6t− 30k1− 30k2− 42k3− 42k4− 48k5− 54k6− 66k7 ≥ 0,

and so

eR(G) = n + r/2 + n1 + t + h− |E1| = 4n/7 + (6n + 7r + 14n1 + 14t− 42h−
28k1 − 14k2 − 42k3 − 28k4 − 42k5 − 56k6 − 70k7)/14

≥ 4n/7+(6n+3r +6n1 +6t−42h−30k1−30k2−42k3−42k4−48k5−54k6−
66k7)/14+ (4r + 8n1 + 8t + 2k1 + 16k2 + 14k4 + 6k5 − 2k6 − 4k7)/14

≥ 4n/7+(4r+8n1 +8t+2k1 +16k2 +14k4 +6k5−2k6−4k7)/14. 〈3〉

Therefore, eR(G) ≥ (4n + 16)/7 holds only if the following formula holds

∆ = 2r + 4n1 + 4t + k1 + 8k2 + 7k4 + 3k5 − k6 − 2k7 ≥ 16. 〈4〉

Let L′1 be a maximal 1-co-belt. It is easy to see that x2 ∈ G−{a1, a2, · · · , ah}−
V ([E0]), and so L′1 will contribute 1 to n1. Since G contains k3 maximal 1-belts,

they contribute k3 to n1. Analogously, for each maximal 2-belt, it contribute

2 to n1, and so k6 maximal 2-belts contribute 2k6 to n1. For W ′-frameworks,

maximal 2-co-belts and W -frameworks, we analyze them analogously. Then

we get the following formula

n1 ≥ k3 + k4 + k5 + 2k6 + 3k7. 〈5〉
From the formulas 〈5〉 and 〈4〉, wobtain

∆ ≥ 2r + 4t + k1 + 8k2 + 4k3 + 11k4 + 7k5 + 7k6 + 10k7. 〈6〉
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We now discuss the following cases.

(4.) h = 0, k = k1 + k2 + k3 + k4 + k5 + k6 + k7 ≤ 2.

First, we claim that [EN(G)] contains at most two cycles. Otherwise, sup-

pose that there are at least three cycles in [EN(G)]. Then we consider a cycle

C1. By Theorem 6.2.4 and the assumption, we conclude that G contains some

structure H1 ∈ Υ as its subgraph such that H1 has an inner edge e1 on C1.

We consider another cycle C2 in [EN(G)] − C1. Analogously, we have that G

contains some structure H2 ∈ Υ as its subgraph such that H2 has an inner

edge e2 on C2. Last, we consider a cycle C3 in [EN(G)] − C1 − C2. Then, G

contains some structure H3 ∈ Υ as its subgraph such that H3 has an inner edge

e3 on C3. Since e1 is an inner edge of H1, but not of H2, we have H1 6= H2.

Analogously, H1 6= H3, H2 6= H3. By Lemma 6.1.1 we know that any two of

H1, H2 and H3 do not have common inner edges, and so k ≥ 3, a contradiction.

Therefore, there are at most two cycles in [EN(G)]. So, eN(G) ≤ n + 1, and

hence eR(G) ≥ 2n− n− 1 > (4n + 16)/7.

(5.) h = 0, k = k1 + k2 + k3 + k4 + k5 + k6 + k7 ≥ 3.

(5.1.) k1 + k3 = 0, and so k2 + k4 + k5 + k6 + k7 ≥ 3. Noticing that t ≥ 1,

from formula 〈6〉 we obtain

∆ ≥ 2r+4+7(k2+k4+k5+k6+k7)+k2+4k4+3k7 ≥ 4+7(k2+k4+k5+k6+k7) ≥
25,

here the inequality 〈4〉 rigidly holds.

(5.2.) k1 + k3 ≥ 1. We may assume that G contains a maximal 1-belt L1

such that V (L1) = {x1, x2, x3, y1, y2, y3}. By Theorem 6.2.5 we know that if

x3, y1 ∈ [E0], then n1 ≥ 2, t ≥ 2. By the formulas 〈4〉 and 〈5〉 we see that

∆ ≥ 2r + 3n1 + 4t + (k1 + k3) + 8k2 + 8k4 + 4k5 + k6 + k7 ≥ 3n1 + 4t + (k1 +

k2 + k3 + k4 + k5 + k6 + k7) ≥ 6 + 8 + 3 = 17.
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If x3 ∈ [E0], y1 6∈ [E0], then n1 ≥ 1, t ≥ 3. Similarly, we get ∆ ≥ 18.

If x3, y1 ∈ [E0], then t ≥ 4, and so ∆ ≥ 19, here the inequality 〈4〉 rigidly

holds.

(6.) h ≥ 1. We take a helm H such that V (H) = {a, x1, x2, x3, x4, v1, v2, v3, v4}.
By Theorem 6.2.4 we have that any two of the edges x1v1, x2v2, x3v3, x4v4 are

in different components, and so t ≥ 4. By formula 〈6〉 we know ∆ ≥ 16,

i.e., eR(G) ≥ (4n + 16)/7, and the equality holds only if ki = 0, where

i = 1, 2, · · · , 7, r = 0, t = 4, n1 = 0, i.e., [E0] has only four components

T1, T2, T3, T4, and V (G) = V ([E0]) ∪ {a1, a2, · · · , ah}. Then from r = 0 we

know that G is a 4-connected and 4-regular graph. From eR(G) = 4h, eN(G) =

10h − 8, we conclude that n = 7h − 4. Moreover, all edges except for

x1
(p)x2

(p), x2
(p)x3

(p), x3
(p)x4

(p), x4
(p)x1

(p) of each helm Hp in G are unremov-

able, whereas different edges of xi
(p)vi

(p) of Hp are in different components Ti,

and every vertex vi
(p) is of degree 1 in Ti. Based on the above arguments, we

conclude that Ti has h vertices with degree 1 and |Ti| − h vertices with degree

4. Therefore, G ∈ =. This complete the proof. ¤



Chapter 7

Removable Edges in a Spanning
Tree or outside a Cycle in a
4-Connected Graph

In this chapter we study the distribution of removable edges in a spanning tree

or outside a cycle in a 4-connected graph. We give examples to show that our

results are best possible in some sense.

7.1 Removable Edges on a Spanning Tree

Before we give the main result, we first show the following lemma.

Lemma 7.1.1. Let G be a 4-connected graph without any subgraph belonging

to <, and let [EN(G)] be a tree. Then |[EN(G)]| ≤ |G| − 3.

Proof. By contradiction. Assume |[EN(G)]| ≥ |G| − 2. Let x be a vertex

of degree 1 in the tree [EN(G)]. Since dG(x) ≥ 4 and |[EN(G)]| ≥ |G| − 2,

there is a vertex y ∈ [EN(G)] such that xy ∈ ER(G). Let P be a path join-

ing x and y in [EN(G)], then P + xy is a cycle of G that contains precisely

one removable edge xy. We consider the cycle C = y1y2 . . . yky1 such that

y1yk ∈ ER(G), E(C) − {y1yk} ⊂ EN(G), and the length of C is as small as

possible in G.

Let D = {y1}. Consider the path P = y1y2 . . . yk in [EN(G)]. Consider

119
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a separating group (y1y2, S1; A1, B1) such that y1 ∈ B1, y2 ∈ A1. Obvi-

ously, D ∩ B1 6= Ø. We take i ∈ {1, 2, . . . , k − 1} and a separating group

(yiyi+1, S; A,B) such that yi ∈ B, yi+1 ∈ A,D ∩ B 6= Ø and |A| is as small

as possible. We claim i + 1 ≤ k − 1. Otherwise, i + 1 = k, then yk ∈ A,

since y1yk ∈ E(G) and y1 ∈ A ∪ S, which contradicts D ∩ B 6= Ø. So,

i + 1 ≤ k − 1. Then we take the separating group (yi+1yi+2, S
′; A′, B′) such

that yi+1 ∈ B′, yi+2 ∈ A′ and |A′| is small as possible. By Lemma 6.2.1 we

have that one of conclusions (i), (ii), (iii) or (iv) of Lemma 5.1.1 holds.

(1.) Conclusion (i) holds. Since y1 ∈ B, we have yk ∈ B ∪ S. So yi+2 is not

an end-vertex of P , and so yi+2 associates with at least two unremovable edges

in G, which contradicts conclusion (i) of Lemma 6.2.1.

(2.) Conclusion (ii) holds. Then d = y1. We let C ′ = A′, T ′ = A∩S ′ ∪{yi+1}
and D′ = G − cd − T ′ − C ′. Then (cd, T ′; C ′, D′) is a separating group of

G, and so cd ∈ EN(G). Since y1yk ∈ ER(G), we have c 6= yk. Hence

yk ∈ B′ ∩ (B ∪ S). Let A ∩ S ′ = {u, v}. Since yi+2 is not an end-vertex

of P , we have {cyi+2, uyi+2, vyi+2} ∩ EN(G) 6= Ø. From Corollary 3.1.1 we

know that yi+2 is a vertex of some subgraph belonging to <, which contradicts

the assumptions. Hence, conclusion (ii) does not occur.

(3.) Conclusion (iii) holds. First we let C ′ = A′, T ′ = (S ′ − {d}) ∪ {yi+1}
and D′ = G − cd − T ′ − C ′. Then (cd, T ′; C ′, D′) is a separating group of G.

So cd ∈ EN(G), and hence c 6= yk. Obviously, yi+2 is not an end-vertex of P .

By an analogous argument as used in (2.), we can deduce that conclusion (iii)

does not occur.

(4.) From the assumption of the theorem, we know that conclusion (iv) does

not occur.

This complete the proof of Lemma 7.1.1. ¤

Theorem 7.1.1. Let G be a 4-connected graph which does not contain any

subgraph belonging to <. Then any spanning tree T of G contains at least one

removable edge.
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Proof. First, we claim that [EN(G)] does not contain any cycle. Otherwise,

if [EN(G)] contains a cycle. By Theorem 6.2.3 and its proof we know that G

must contain some a subgraph belonging to <, which contradicts the assump-

tion of the theorem.

If [EN(G)] is a tree, then by Lemma 7.1.1 we have |[EN(G)]| ≤ |G| − 3.

Since |E(T )| = |G| − 1, we have |E(T ) ∩ ER(G)| ≥ 2.

If [EN(G)] is a forest with at least two components, then clearly the theo-

rem holds. ¤

Here we give an example to show that the low bound of the theorem is

sharp.

Example 7.1.1. Let H be a helm as in Definition 2.1, such that V (H) =

{a, x1, x2, x3, x4, v1, v2, v3, v4} and E(H) = {ax1, ax2, ax3, ax4, x1x2, x2x3, x3x4,

x4x1, x1v1, x2v2, x3v3, x4v4}.

Let L = H − {v1, v2, v3, v4}, and L′ be a copy of L such that V (L′) =

{a′, x′1, x′2, x′3, x′4}. We construct a graph G as follows:

Let V (G) = V (L)∪V (L′) and E(G) = E(L)∪E(L′)∪{x1x3, x
′
2x
′
4, x1x

′
1, x2x

′
2,

x3x
′
3, x4x

′
4}. Obviously, G is a 4-connected graph which does not contain any

subgraph belonging to <. It is easy to see that (ax2, {x1, x3, x
′
4}) is a separating

pair of G, and so ax2 ∈ EN(G). By symmetry, ax4, a
′x′1, a

′x′3 ∈ EN(G). Sim-

ilarly, (x1x
′
1, {x2, x3, x4}) is a separating pair of G, and hence x1x

′
1 ∈ EN(G).

By symmetry, we have x2x
′
2, x3x

′
3, x4x

′
4 ∈ EN(G).

Let T be a spanning tree of G such that E(T ) = {x1x
′
1, x2x

′
2, x3x

′
3, x4x

′
4, a

′x′2,

a′x′3, ax′1, ax2, ax4}. Then it is easily checked that there is only one removable

edge a′x′2 in T .
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7.2 Removable Edges outside Cycles

In this section we study the distribution of removable edges outside a cycle in

a 4-connected graph. First, we give the following definition.

Definition 7.1.1. Let C be a cycle of a 4-connected graph G and H a

subgraph of G belonging to <. If C contains an inner vertex of H, then we

say that C passes through H.

We prove two results on the existence of removable edges outside a cycle.

Theorem 7.2.1. Let G be a 4-connected graph and C be a cycle of G. If C

does not pass through any l-belt or l-co-belt, then there are at least two remov-

able edges outside C.

Proof. By contradiction. Assume that there is at most one removable edge

outside C. Let F = (E(G) − E(C)) ∩ ER(G). Then |F | ≤ 1. We denote

E(G)−E(C)− F by E0. If C does not pass through any subgraph belonging

to <, we take the separating group (uw, S ′; A′, B′) such that u ∈ A′, w ∈ B′

and uw ∈ E0. Since |F | ≤ 1, we know that either (E(A′) ∪ [A′, S ′]) ∩ F = Ø

or (E(B′) ∪ [S ′, B′]) ∩ F = Ø hold. Without loss of generality, we may as-

sume (E(A′) ∪ [A′, S ′]) ∩ F = Ø. If C passes through a subgraph H of G

that belongs to <, noticing that H is neither an l-belt nor an l-co-belt, then

from the definition of < we have the following discussion: If H is a maximal

l-bi-fan (l ≥ 1), then l = 1. If C ⊂ E(H), then according to the assump-

tion we have eR(G) ≤ 5. Obviously, |G| ≥ 7. By Theorem 6.3.1 we have

eR(G) ≥ (4|G| + 16)/7 > 5, a contradiction. So we have F ∩ E(H) 6= Ø. By

letting S ′ = {a, b, x4}, e = x2x1, B
′ = {x2, x3} and A′ = G − e − S ′ − B′, we

get that (e, S ′; A′, B′) is a separating group of G such that A′ does not contain

any inner vertex of the maximal l-bi-fan, and F ∩ (E(A′) ∪ E([A′, S ′])) = Ø.

If H is a helm, we use a similar argument to get F ∩ E(H) 6= Ø. By letting

e = x1v1, S
′ = {v2, v3, v4}, B′ = {a, x1, x2, x3, x4} and A′ = G− e−S ′−B′, we

get that (e, S ′; A′, B′) is a separating group of G such that A′ does not contain

any inner vertex of the helm, and F ∩ (E(A′)∪E([A′, S ′])) = Ø. If H is a W -

framework, according to the assumption we must have F = y2y3. In this case,
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by letting e = x2x1, S
′ = {x3, y4, y2}, B′ = {x2, y3} and A′ = G−e−S ′−B′, we

get that (e, S ′; A′, B′) is a separating group of G such that A′ does not contain

any inner vertex of the W -framework, and F ∩ (E(A′) ∪ E([A′, S ′])) = Ø. If

H is a W ′-framework, according to the assumption we have E(C) ⊂ E(H)

and F ⊂ E(H). Then, eR(G) = 5. However, by Theorem 6.3.1 we have

eR(G) ≥ (4|G|+ 16)/7 > 5, a contradiction.

Since A′ is an E0-edge-vertex cut fragment, A′ must contain an E0-edge-

vertex cut end-fragment as its subgraph, say A. Then we have (E(A)∪[A, S])∩
F = Ø, and we take the corresponding separating group (xy, S; A,B) such that

x ∈ A, y ∈ B.

We distinguish the following cases to complete the proof.

Case 1. |A| = 2.

Then, either A is a 1-edge-vertex cut atom or a 2-edge-vertex-cut atom.

Let A = {x, z} and S = {a, b, c}. If A is a 1-edge-vertex-cut atom, and

{xz, xa, xb} ∩ EN(G) 6= Ø, from Corollary 3.1.1 we have that x is an in-

ner vertex of some subgraph belonging to <, a contradiction. So, we have

xz, xa, xb ∈ ER(G). Since C is a cycle, then F ∩ E(A) 6= Ø, a contradic-

tion. Suppose now that A is a 2-edge-vertex-cut atom, it is easily checked that

F ∩ (E(A) ∪ [A, S]) 6= Ø. The theorem holds.

Case 2. |A| ≥ 3.

Since C is a cycle of G, and (E(A) ∪ [A, S]) ∩ F = Ø, there exists xz ∈
E0 ∩ E(A ∪ [A, S]). Obviously, z 6∈ S, otherwise we would have |A| = 2. We

take the separating group (xz, S1; A1, B1) such that x ∈ A1, z ∈ B1. Then we

have x ∈ A∩A1 and z ∈ A∩B1. Hence one of the three conclusions of Lemma

5.1.1 holds.

(1.) Since C is a cycle and (E(A) ∪ [A, S]) ∩ F = Ø, conclusion (i) does

not occur.



124 CHAPTER 7. REMOVABLE EDGES OUTSIDE A CYCLE

(2.) Suppose that conclusion (ii) holds. Since B′ is a 1-edge-vertex-cut

atom, by noticing F ∩ (E(A)∪E([A, S])) = Ø, we can use a similar argument

as used in Case 1 to show that the conclusion of the theorem holds.

(3.) Finally, suppose that conclusion (iii) holds. Let B′ ∩ S = {x1, x2}
and A ∩ B′ = {x3}. By combining the conclusion of Lemma 5.1.2, we have

zx1, zx2 ∈ ER(G). Since |B′| ≥ 3, from Theorem 2.1.2 we have y′x3 ∈ ER(G).

Note that C is a cycle of G, and F ∩ (E(A)∪ [A, S]) = Ø, which is impossible

to hold. So, the theorem holds.

This complete the proof. ¤

We give an example to show that the result of Theorem 7.2.1 is best pos-

sible.

Example 7.2.2. Let H be a helm as in Definition 1.2.1, V (H) = {a, x1, x2, x3,

x4, v1, v2, v3, v4}, E(H) = {ax1, ax2, ax3, ax4, x1x2, x2x3, x3x4, x4x1, x1v1, x2v2,

x3v3, x4v4}.

Let L = H − {v1, v2, v3, v4}, and L′ be a copy of L such that V (L′) =

{a′, x′1, x′2, x′3, x′4}. We construct a graph G as follows:

Let V (G) = V (L)∪V (L′) and E(G) = E(L)∪E(L′)∪{x1x
′
1, x2x

′
2, x3x

′
3, x4x

′
4}.

Obviously, G is a 4-connected graph. It is easy to see that (ax2, {x1, x3, x
′
4}) is a

separating pair of G, and so ax2 ∈ EN(G). By symmetry, ax4, ax1, ax3, a
′x′1, a

′x′2,

a′x′3, a
′x′4 ∈ EN(G). It is easy to see that (x1x

′
1, {x2, x3, x4}) is a separating

pair of G, and hence x1x
′
1 ∈ EN(G). By symmetry, we have x2x

′
2, x3x

′
3, x4x

′
4 ∈

EN(G).

Let C be the cycle x1x4x3x2x
′
2x
′
3x
′
4x
′
1x1. Clearly, C does not pass through

any l-belt or l-co-belt. It is easy to see that C is a cycle outside which there

are exactly two removable edges x1x2, x
′
1x
′
2.



7.2. REMOVABLE EDGES OUTSIDE CYCLES 125

Theorem 7.2.2. Let G be a 4-connected graph and C a cycle of G. If C

passes through only one (maximal) l-belt or l-co-belt, then there is at least one

removable edge outside C.

Proof. By contradiction. Assume that there is no removable edge outside

C. Let E0 = E(G)− E(C). Suppose that C passes through a subgraph H in

<. If H is one of the following structures: helm, W ′-framework, W -framework

or l-bi-fan, then we can apply similar arguments as used in the proof of Cases

1 and 2 of Theorem 7.2.1 to show that the conclusion is true. So, we may

suppose that H is either a (maximal) l-belt or l-co-belt. If H is a maxi-

mal l-belt as in Definition 1.2.3, from the assumption it is easy to see that

E0 ⊂ E(C), and x2x1 ∈ E0. By letting S = {yl+2, xl+2, y1}, e = x2x1, B =

{x2, · · · , xl+1, y2, · · · , yl+1}, A = G − e − S − B, we get that (e, S; A,B) is a

separating group of G such that A does not contain any inner vertex of H, if

H is a maximal l-co-belt as in Definition 1.2.4, similarly, we have x1x2 ∈ E0.

By letting S = {yl+2, xl+3, y1}, e = x2x1, B = {x2, · · · , xl+2, y2, · · · , yl+1} and

A = G−e−S−B, we get that (e, S; A,B) is a separating group of G such that

A does not contain any inner vertex of H. We can apply similar arguments as

used in Cases 1 and 2 of Theorem 7.2.1 to complete the proof of the theorem. ¤

We complete this chapter by presenting two examples to show that if a

cycle C in a 4-connected graph G contains two l-belts or l-co-belts, then there

could be no removable edge outside C of G. So in this sense the condition of

the Theorem 7.2.2 is best possible.

Example 7.2.3. Let H be an l-belt as in Definition 7.2.3, H ′ be a copy of

H such that V (H ′) = {x′1, x′2, · · · , x′l+2, y
′
1, y

′
2, · · · , y′l+2} and E(H ′) = E1(H

′)∪
E2(H

′) where E1(H
′) = {x′1x′2, x′2x′3, · · · , x′l+1x

′
l+2, y

′
1y
′
2, y

′
2y
′
3, · · · , y′l+1y

′
l+2} and

E2(H
′) = {y′1x′2, x′2y

′
2, y′2x

′
3, · · · , y′lx′l+1, x

′
l+1y

′
l+1, y

′
l+1x

′
l+2}. Identify vertex x1

with y′1, vertex y1 with y′l+2, vertex yl+2 with x′l+2, vertex xl+2 with x′1. Then

join vertex xl+2 with y′1, vertex y1 with x′l+2. Denote the resulting graph by

G. It is easily checked that G is a 4-connected graph and (x2y
′
1, {y1, x3, y3})

is a separating group of G, hence x2y
′
1 ∈ EN(G). Similarly, we can show

{y1y
′
l+1, yl+1x

′
l+2, x

′
2xl+2} ⊂ EN(G). Let C be the cycle y1x2y2x3 . . . xl+1yl+1xl+2



126 CHAPTER 7. REMOVABLE EDGES OUTSIDE A CYCLE

y′1x
′
2y
′
2 . . . x′l+1y

′
l+1x

′
l+2y1. Then it is easy to see that there is no removable edge

outside C.

Example 7.2.4. Let H be an l-co-belt as in Definition 1.2.4, H ′ be a copy

of H such that V (H ′) = {x′1, x′2, · · · , x′l+2, x
′
l+3, y

′
1, y

′
2, · · · , y′l+2} and E(H ′) =

E1(H
′)∪E2(H

′), where E1(H
′) = {x′1x′2, x′2x′3, · · · , x′l+1x

′
l+2, x

′
l+2x

′
l+3, y

′
1y
′
2, y

′
2y
′
3,

· · · , y′l+1y
′
l+2} and E2(H

′) = {y′1x′2, x′2y
′
2, y′2x

′
3, · · · , x′l+1y

′
l+1, y

′
l+1x

′
l+2, x

′
l+2y

′
l+2}.

First, delete vertices x1, x′1, xl+3, x′l+3 from H and H ′, respectively. Then

join vertex xl+2 with y′l+2, vertex y1 with y′1, vertex x′l+2 with yl+2, vertex x2

with x′2, vertex y1 with y′l+2, vertex y′1 with yl+2, respectively. Denote the

resulting graph by G. It is easily checked that G is a 4-connected graph, and

(y1y
′
1, {yl+2, y

′
l+2, x

′
2}) is a separating group of G, and so y1y

′
1 ∈ EN(G). Simi-

larly, (xl+2y
′
l+2, {yl, xl+1, yl+2}), (x2x

′
2, {y1, x3, y3}) and (yl+2x

′
l+2, {x′l+1, y

′, y′l+2})
are separating groups of G, and so {xl+2y

′
l+2, x2x

′
2, yl+2x

′
l+2} ⊂ EN(G). Let C

be the cycle y1x2y2x3 . . . xl+1yl+1xl+2yl+2y
′
1x
′
2y
′
2 . . . x′l+1y

′
l+1x

′
l+2y

′
l+2y1. Then it

is easy to see that there is no removable edge outside C.
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